Statistical Science

Comment

Arnold Zellner

Full-text: Open access

Article information

Source
Statist. Sci. Volume 24, Number 2 (2009), 187-190.

Dates
First available in Project Euclid: 14 January 2010

Permanent link to this document
https://projecteuclid.org/euclid.ss/1263478379

Digital Object Identifier
doi:10.1214/09-STS284C

Mathematical Reviews number (MathSciNet)
MR2655847

Zentralblatt MATH identifier
1328.62015

Citation

Zellner, Arnold. Comment. Statist. Sci. 24 (2009), no. 2, 187--190. doi:10.1214/09-STS284C. https://projecteuclid.org/euclid.ss/1263478379


Export citation

References

  • Billingsley, P. (1986). Probability and Measure. Wiley, New York.
  • De Finetti, B. (1970). The Theory of Probability. Wiley, New York.
  • Feller, W. (1997). An Introduction to Probability Theory and Its Applications. Wiley.
  • Geisser, S. (1980). The contributions of Sir Harold Jeffreys to Bayesian inference. In Bayesian Analysis in Econometrics and Statistics: Essays in Honor of Harold Jeffreys (A. Zellner, ed.) 13–20. North-Holland, Amsterdam. (Reprinted 1989.)
  • Good, I. J. (1962). Review of Harold Jeffreys’s Theory of Probability, 3rd ed. J. Roy. Statist. Soc. Ser. A 125 487–489.
  • Good, I. J. (1980). The Contributions of Sir Harold Jeffreys to Bayesian inference. In Bayesian Analysis in Econometrics and Statistics: Essays in Honor of Harold Jeffreys (A. Zellner, ed.) 21–34. North-Holland, Amsterdam. (Reprinted 1989.)
  • Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge Univ. Press, Cambridge.
  • Jeffreys, H. (1967). Theory of Probability, 3rd ed. Oxford Univ. Press, Oxford.
  • Zellner, A. (1988). Optimal information processing and Bayes’s theorem. Amer. Statist. 42 278–294 [with discussion by E. T. Jaynes, B. M. Hill, J. M. Bernardo and S. Kullback and the author’s response (reprinted in Zellner (1997b)].
  • Zellner, A. (1997a). Past and recent results on maximal data information priors. In Bayesian Analysis in Econometrics and Statistics. The Zellner View and Papers 127–148. Edward Elgar, Cheltenham, UK and Lyme, US.
  • Zellner, A. (1997b). Bayesian Analysis in Econometrics and Statistics. The Zellner View and Papers. Edward Elgar, Cheltenham, UK and Lyme, US.
  • Zellner, A. (2007). Generalizing the standard product rule of probability theory. J. Econom. 138 14–23.
  • Zellner, A., Kuezenkamp, H. and McAleer, M., eds. (2001). Simplicity, Inference and Modeling (Keeping It Sophisticatedly Simple). Cambridge Univ. Press, Cambridge.