Statistical Science

Comment: The Importance of Jeffreys’s Legacy

Robert Kass

Full-text: Open access

Abstract

Theory of Probability is distinguished by several high-level philosophical attitudes, some stressed by Jeffreys, some implicit. By reviewing these we may recognize the importance in this work in the historical development of statistics.

Article information

Source
Statist. Sci. Volume 24, Number 2 (2009), 179-182.

Dates
First available in Project Euclid: 14 January 2010

Permanent link to this document
https://projecteuclid.org/euclid.ss/1263478376

Digital Object Identifier
doi:10.1214/09-STS284A

Mathematical Reviews number (MathSciNet)
MR2655844

Zentralblatt MATH identifier
1328.62010

Keywords
Approximate Bayesian inference Bayes factors statistical models

Citation

Kass, Robert. Comment: The Importance of Jeffreys’s Legacy. Statist. Sci. 24 (2009), no. 2, 179--182. doi:10.1214/09-STS284A. https://projecteuclid.org/euclid.ss/1263478376


Export citation

References

  • Brown, E. N. and Kass, R. E. (2009). What is statistics? (with discussion). Amer. Statist. To appear.
  • Box, G. E. P. (1979). Robustness in the strategy of scientific model building. In Robustness in Statistics (R. L. Launer and G. N. Wilkinson, eds.). Academic Press, New York.
  • Cox, D. R. (1990). Role of models in statistical analysis. Statist. Sci. 5 169–174.
  • Cox, D. R. (2001). Comment on article by Breiman. Statist. Sci. 16 216–218.
  • Efron, B. (2001). Comment on article by Breiman. Statist. Sci. 16 218–219.
  • Freedman, D. A. and Zeisel, H. (1988). From mouse-to-man: The quantitative assessment of cancer risks. Statist. Sci. 3 3–28.
  • Kass, R. E. (1989). The geometry of asymptotic inference (with discussion). Statist. Sci. 4 188–234.
  • Kass, R. E. (1991). More about “Theory of Probability” by H. Jeffreys. Chance 4 13.
  • Kass, R. E. and Raftery, A. (1995). Bayes factors. J. Amer. Statist. Assoc. 90 773–795.
  • Kass, R. E. and Wasserman, L. A. (1996). The selection of prior distributions by formal rules. J. Amer. Statist. Assoc. 91 1343–1370.
  • Kruskal, W. and Neyman, J. (1956). Stochastic models and their applications to social phenomena. Unpublished lecture at Joint Statistical Meetings, Detroit; referenced by Lehmann (1990).
  • Lehmann, E. L. (1990). Model specification: The views of Fisher and Neyman, and later developments Statist. Sci. 5 160–168.
  • Stanford, P. K. (2006). Exceeding Our Grasp. Oxford Univ. Press, Oxford.