Statistical Science

Bayes, Jeffreys, Prior Distributions and the Philosophy of Statistics

Andrew Gelman

Full-text: Open access

Article information

Statist. Sci. Volume 24, Number 2 (2009), 176-178.

First available in Project Euclid: 14 January 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Gelman, Andrew. Bayes, Jeffreys, Prior Distributions and the Philosophy of Statistics. Statist. Sci. 24 (2009), no. 2, 176--178. doi:10.1214/09-STS284D.

Export citation


  • Belin, T. R., Diffendal, G. J., Mack, S., Rubin, D. B., Schafer, J. L. and Zaslavsky, A. M. (1993). Hierarchical logistic regression models for imputation of unresolved enumeration status in undercount estimation (with discussion). J. Amer. Statist. Assoc. 88 1149–1166.
  • Box, G. E. P. (1980). Sampling and Bayes inference in scientific modelling and robustness. J. Roy. Statist. Soc. Ser. A 143 383–430.
  • Chipman, H. A., George, E. I. and McCulloch, R. E. (2008). Bayesian additive regression trees. Technical report.
  • de Finetti, B. (1974, 1975). Theory of Probability. Wiley, New York.
  • Dunson, D. B. (2006). Bayesian dynamic modeling of latent trait distributions. Biostatistics 7 551–568.
  • Gelman, A. (1996). Bayesian model building by pure thought. Some principals and examples. Statist. Sinica 6 215–232.
  • Gelman, A. (2003). A Bayesian formulation of exploratory data analysis and goodness-of-fit testing. Internat. Statist. Rev. 71 369–382.
  • Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian Anal. 1 515–533.
  • Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (1995). Bayesian Data Analysis. Chapman and Hall, London.
  • Gelman, A., Jakulin, A., Pittau, M. G. and Su, Y. S. (2008). A weakly informative default prior distribution for logistic and other regression models. Ann. Appl. Statist. 2 1360–1383.
  • Gelman, A., Meng, X. L. and Stern, H. S. (1996). Posterior predictive assessment of model fitness via realized discrepancies (with discussion). Statist. Sinica 6 733–807.
  • Gelman, A. and Rubin, D. B. (1995). Avoiding model selection in Bayesian social research. Discussion of “Bayesian model selection in social research,” by A. E. Raftery. In Sociological Methodology 1995 (P. V. Marsden, ed.) 165–173. American Sociological Association, Washington, DC.
  • Jaynes, E. T. (1983). Papers on Probability, Statistics, and Statistical Physics (R. D. Rosenkrantz, ed.). Reidel, Dordrecht.
  • Jefferys, W. H. and Berger, J. O. (1992). Occam’s razor and Bayesian analysis. Amer. Sci. 80 65–72. (Erratum: Amer. Sci. 80 116.)
  • Jeffreys, H. (1961). Theory of Probability, 3rd ed. Oxford Univ. Press.
  • Kass, R. E. and Wasserman, L. (1996). The selection of prior distributions by formal rules. J. Amer. Statist. Assoc. 91 1343–1370.
  • Kuhn, T. (1962). The Structure of Scientific Revolutions. MIT Press, Cambridge.
  • Lindley, D. V. (1958). Fiducial distributions and Bayes’ theorem. J. Roy. Statist. Soc. Ser. B 20 102–107.
  • Lindley, D. V. (1965). Introduction to Probability and Statistics from a Bayesian Viewpoint. Cambridge Univ. Press.
  • Luce, R. D. and Raiffa, H. (1957). Games and Decisions. Wiley, New York.
  • MacKay, D. J. C. (2002). Information Theory, Inference and Learning Algorithms. Cambridge Univ. Press.
  • Neal, R. M. (1996). Bayesian Learning for Neural Networks. Springer, New York.
  • Raftery, A. E. (1995). Bayesian model selection in social research (with discussion). In Sociological Methodology 1995 (P. V. Marsden, ed.) 111–163. American Sociological Association, Washington, DC.
  • Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for the applied statistician. Ann. Statist. 12 1151–1172.
  • Savage, L. J. (1954). Foundations of Statistical Inference. Wiley, New York.