Statistical Science


José M. Bernardo

Full-text: Open access

Article information

Statist. Sci. Volume 24, Number 2 (2009), 173-175.

First available in Project Euclid: 14 January 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Bernardo, José M. Comment. Statist. Sci. 24 (2009), no. 2, 173--175. doi:10.1214/09-STS284E.

Export citation


  • Berger, J., Bernardo, J. M. and Sun, D. (2009). The formal definition of reference priors. Ann. Statist. 37 905–938.
  • Bernardo, J. M. (2005). Reference analysis. In Handbook of Statistics (D. K. Dey and C. R. Rao, eds.) 25 17–90. Elsevier, Amsterdam.
  • Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference. J. Roy. Statist. Soc. Ser. B 41 113–147 (with discussion). Reprinted in (1995) Bayesian Inference (N. G. Polson and G. C. Tiao, eds.). Brookfield, VT. Edvard Elgar 229–263.
  • Bernardo, J. M. and Rueda, R. (2002). Bayesian hypothesis testing: A reference approach. Internat. Statist. Rev. 70 351–372.
  • Box, G. E. P. and Tiao, G. C. (1973). Bayesian Inference in Statistical Analysis. Addison-Wesley, Reading, MA.
  • Dawid, A. P., Stone, M. and Zidek, J. V. (1973). Marginalization paradoxes in Bayesian and structural inference (with discussion). J. Roy. Statist. Soc. Ser. B 35 189–233.
  • Jaynes, E. T. (1980). Comments on hypothesis testing. In Bayesian Statistics (J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.) 618–629. Valencia Univ. Press, Valencia.
  • Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems. Proc. Roy. Soc. London Ser. A 186 453–461.
  • Hartigan, J. A. (1965). The asymptotically unbiased prior distribution. Ann. Math. Statist. 36 1137–1152.
  • Lindley, D. V. (1957). A statistical paradox. Biometrika 44 187–192.
  • Lindley, D. V. (1961). The use of prior probability distributions in statistical inference and decision. In Proc. Fourth Berkeley Symp. Math. Statist. Probab. (J. Neyman and E. L. Scott, eds.) 4 453–468. Univ. California Press, Berkeley.
  • Perks, W. (1947). Some observations on inverse probability, including a new indifference rule (with discussion). J. Inst. Actuaries 73 285–334.
  • Robert, C. P. (1993). A note on Jeffreys–Lindley paradox. Statist. Sinica 3 603–608.
  • Robert, C. P. (1996). Intrinsic loss functions. Theory and Decision 40 192–214.
  • Stein, C. (1959). An example of wide discrepancy between fiducial and confidence intervals. Ann. Math. Statist. 30 877–880.
  • Welch, B. L. and Peers, H. W. (1963). On formulae for confidence points based on intervals of weighted likelihoods. J. Roy. Statist. Soc. Ser. B 25 318–329.