## Statistical Science

- Statist. Sci.
- Volume 23, Number 3 (2008), 404-419.

### Handling Covariates in the Design of Clinical Trials

William F. Rosenberger and Oleksandr Sverdlov

**Full-text: Open access**

#### Abstract

There has been a split in the statistics community about the need for taking covariates into account in the design phase of a clinical trial. There are many advocates of using stratification and covariate-adaptive randomization to promote balance on certain known covariates. However, balance does not always promote efficiency or ensure more patients are assigned to the better treatment. We describe these procedures, including model-based procedures, for incorporating covariates into the design of clinical trials, and give examples where balance, efficiency and ethical considerations may be in conflict. We advocate a new class of procedures, covariate-adjusted response-adaptive (CARA) randomization procedures that attempt to optimize both efficiency and ethical considerations, while maintaining randomization. We review all these procedures, present a few new simulation studies, and conclude with our philosophy.

#### Article information

**Source**

Statist. Sci. Volume 23, Number 3 (2008), 404-419.

**Dates**

First available in Project Euclid: 28 January 2009

**Permanent link to this document**

https://projecteuclid.org/euclid.ss/1233153066

**Digital Object Identifier**

doi:10.1214/08-STS269

**Mathematical Reviews number (MathSciNet)**

MR2483911

**Zentralblatt MATH identifier**

1329.62350

**Keywords**

Balance covariate-adaptive randomization covariate-adjusted response-adaptive randomization efficiency ethics

#### Citation

Rosenberger, William F.; Sverdlov, Oleksandr. Handling Covariates in the Design of Clinical Trials. Statist. Sci. 23 (2008), no. 3, 404--419. doi:10.1214/08-STS269. https://projecteuclid.org/euclid.ss/1233153066

#### References

- Aickin, M. (2001). Randomization, balance and the validity and efficiency of design-adaptive allocation methods.
*J. Statist. Plann. Inf.***94**97–119.Mathematical Reviews (MathSciNet): MR1820173

Zentralblatt MATH: 0976.62099

Digital Object Identifier: doi:10.1016/S0378-3758(00)00228-7 - Atkinson, A. C. (1982). Optimum biased coin designs for sequential clinical trials with prognostic factors.
*Biometrika***69**61–67.Mathematical Reviews (MathSciNet): MR655670

Zentralblatt MATH: 0483.62067

Digital Object Identifier: doi:10.1093/biomet/69.1.61

JSTOR: links.jstor.org - Atkinson, A. C. (1999). Optimum biased-coin designs for sequential treatment allocation with covariate information (with discussion).
*Statist. Med.***18**1741–1752. - Atkinson, A. C. (2002). The comparison of designs for sequential clinical trials with covariate information.
*J. Roy. Statist. Soc. Ser. A***165**349–373.Mathematical Reviews (MathSciNet): MR1904822

Zentralblatt MATH: 1001.62522

Digital Object Identifier: doi:10.1111/1467-985X.00564

JSTOR: links.jstor.org - Atkinson, A. C. and Biswas, A. (2005a). Bayesian adaptive biased-coin designs for clinical trials with normal responses.
*Biometrics***61**118–125.Mathematical Reviews (MathSciNet): MR2135851

Digital Object Identifier: doi:10.1111/j.0006-341X.2005.031002.x - Atkinson, A. C. and Biswas, A. (2005b). Adaptive biased-coin designs for skewing the allocation proportion in clinical trials with normal responses.
*Statist. Med.***24**2477–2492. - Baldi Antognini, A. and Giovagnoli, A. (2005). On the large sample optimality of sequential designs for comparing two or more treatments.
*Sequential Anal.***24**205–217.Mathematical Reviews (MathSciNet): MR2154938 - Baldi Antognini, A. and Giovagnoli, A. (2006). On asymptotic inference for sequential experiments with an adaptive treatment allocation and/or an adaptive stopping rule.
*Metron***64**29–45. - Ball, F. G., Smith, A. F. M. and Verdinelli, I. (1993). Biased coin designs with Bayesian bias.
*J. Statist. Plann. Inf.***34**403–421.Mathematical Reviews (MathSciNet): MR1210443

Zentralblatt MATH: 0783.62054

Digital Object Identifier: doi:10.1016/0378-3758(93)90148-Y - Bandyopadhyay, U. and Biswas, A. (2001). Adaptive designs for normal responses with prognostic factors.
*Biometrika***88**409–419.Mathematical Reviews (MathSciNet): MR1844841

Zentralblatt MATH: 0984.62054

Digital Object Identifier: doi:10.1093/biomet/88.2.409

JSTOR: links.jstor.org - Bandyopadhyay, U., Biswas, A. and Bhattacharya, R. (2007). A covariate-adjusted two-stage allocation design for binary responses in randomized clinical trials.
*Statist. Med.***26**4386–4399. - Begg, C. B. and Iglewicz, B. (1980). A treatment allocation procedure for sequential clinical trials.
*Biometrics***36**81–90. - Begg, C. B. and Kalish, L. (1984). Treatment allocation in sequential clinical trials: The logistic model.
*Biometrics***40**409–420. - Birkett, N. J. (1985). Adaptive allocation in randomized controlled trials.
*Controlled Clin. Trials***6**146–155. - Buyse, M. and McEntegart, D. (2004). Achieving balance in clinical trials: An unbalanced view from EU regulators.
*Applied Clin. Trials***13**36–40. - Day, S., Grouin, J.-M. and Lewis, J. (2005). Achieving balance in clinical trials.
*Applied Clin. Trials***13**41–43. - Ebbutt, A., Kay, R., McNamara, J. and Engler, J. (1997). The analysis of trials using a minimisation algorithm. In
*Statisticians in the Pharmaceutical Industry Annual Conference Report*,*1997*12–15. PSI, London. - Efron, B. (1971). Forcing a sequential experiment to be balanced.
*Biometrika***58**403–417.Mathematical Reviews (MathSciNet): MR312660

Zentralblatt MATH: 0226.62086

Digital Object Identifier: doi:10.1093/biomet/58.3.403

JSTOR: links.jstor.org - Efron, B. (1980). Randomizing and balancing a complicated sequential experiment. In
*Biostatistics Casebook*(R. G. Miller, B. Efron, B. Brown and L. E. Moses, eds.) 19–30. Wiley, New York. - Frane, J. W. (1998). A method of biased coin randomization, its implementation and its validation.
*Drug Inf. J.***32**423–432. - Gail, M. (1992). A conversation with Nathan Mantel.
*Statist. Sci.***12**88–97. - Grizzle, J. E. (1982). A note on stratifying versus complete random assignment in clinical trials.
*Controlled Clin. Trials***3**365–368. - Grouin, J.-M., Day, S. and Lewis, J. (2004). Adjustment for baseline covariates: An introductory note.
*Statist. Med.***23**697–699. - Hammerstrom, T. (2003). Computer intensive and re-randomization tests in clinical trials. FDA/Industry Workshop, Bethesda, MD.
- Harville, D. A. (1974). Nearly optimal allocation of experimental units using observed covariate values.
*Technometrics***16**589–599.Mathematical Reviews (MathSciNet): MR418353

Digital Object Identifier: doi:10.2307/1267612

JSTOR: links.jstor.org - Heritier, S., Gebski, V. and Pillai, A. (2005). Dynamic balancing randomization in controlled clinical trials.
*Statist. Med.***24**3729–3741. - Hu, F. and Rosenberger, W. F. (2006).
*The Theory of Response-Adaptive Randomization*. Wiley, New York. - Hu, F. and Zhang, L.-X. (2004). Asymptotic properties of doubly adaptive biased coin designs for multitreatment clinical trials.
*Ann. Statist.***32**268–301.Mathematical Reviews (MathSciNet): MR2051008

Zentralblatt MATH: 1105.62381

Project Euclid: euclid.aos/1079120137 - Kalish, L. A. and Begg, C. B. (1985). Treatment allocation methods in clinical trials: A review.
*Statist. Med.***4**129–144. - Kalish, L. A. and Begg, C. B. (1987). The impact of treatment allocation procedures on nominal significance levels and bias.
*Controlled Clin. Trials***8**121–135. - Kalish, L. A. and Harrington, D. P. (1988). Efficiency of balanced treatment allocation for survival analysis.
*Biometrics***44**815–821. - Kiefer, J. and Wolfowitz, J. (1960). The equivalence of two extremum problems.
*Canad. J. Math.***12**363–366.Mathematical Reviews (MathSciNet): MR117842 - Klotz, J. H. (1978). Maximum entropy constrained balance randomization for clinical trials.
*Biometrics***34**283–287. - Leyland-Jones, B. (2003). Breast cancer trial with erythropoietin terminated unexpectedly.
*Lancet Oncology***4**459–460. - McEntegart, D. (2003). The pursuit of balance using stratified and dynamic randomization techniques: An overview.
*Drug Inf. J.***37**293–308. - Nordle, O. and Brantmark, B. (1977). A self-adjusting randomization plan for allocation of patients into two treatment groups.
*Clin. Pharm. Therap.***22**825–830. - Permutt, T. (2000). Adjustment for covariates. In
*Encyclopedia of Biopharmaceutical Statistics*(S. C. Chow, ed.). Dekker, New York. - Pesarin, F. (2001).
*Multivariate Permutation Tests With Applications in Biostatistics*. Wiley, Chichester. - Pocock, S. J. and Simon, R. (1975). Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial.
*Biometrics***31**103–115. - Raghavarao, D. (1980). Use of distance function in sequential treatment assignment for prognostic factors in the controlled clinical trial.
*Calcutta Statist. Assoc. Bull.***29**99–102. - Rosenberger, W. F. and Lachin, J. L. (2002).
*Randomization in Clinical Trials*:*Theory and Practice*. Wiley, New York.Mathematical Reviews (MathSciNet): MR1914364 - Rosenberger, W. F., Stallard, N., Ivanova, A., Harper, C. and Ricks, M. (2001). Optimal adaptive designs for binary response trials.
*Biometrics***57**909–913.Mathematical Reviews (MathSciNet): MR1863454

Digital Object Identifier: doi:10.1111/j.0006-341X.2001.00909.x

JSTOR: links.jstor.org - Rosenberger, W. F., Vidyashankar, A. N. and Agarwal, D. K. (2001). Covariate-adjusted response-adaptive designs for binary response.
*J. Biopharm. Statist.***11**227–236. - Scott, N. W., McPherson, G. C., Ramsay, C. R. and Campbell, M. K. (2002). The method of minimization for allocation to clinical trials: A review.
*Controlled Clin. Trials***23**662–674. - Sibson, R. (1974). D-optimality and duality. In
*Progress in Statistics*(J. Gani, K. Sarkadi and J. Vincze, eds.). North-Holland, Amsterdam. - Signorini, D. F., Leung, O., Simes, R. J., Beller, E. and Gebski, V. J. (1993). Dynamic balanced randomization for clinical trials.
*Statist. Med.***12**2343–2350. - Smith, R. L. (1984a). Properties of biased coin designs in sequential clinical trials.
*Ann. Statist.***12**1018–1034.Mathematical Reviews (MathSciNet): MR751289

Zentralblatt MATH: 0553.62068

Digital Object Identifier: doi:10.1214/aos/1176346718

Project Euclid: euclid.aos/1176346718 - Smith, R. L. (1984b). Sequential treatment allocation using biased coin designs.
*J. Roy. Statist. Soc. Ser. B***46**519–543. - Taves, D. R. (1974). Minimization: A new method of assigning patients to treatment and control groups.
*J. Clin. Pharmacol. Therap.***15**443–453. - Taves, D. R. (2004). Faulty assumptions in Atkinson’s criteria for clinical trial design.
*J. Roy. Statist. Soc. Ser. A***167**179–180.Mathematical Reviews (MathSciNet): MR2037922

Digital Object Identifier: doi:10.1046/j.0964--1998.2003.00741.x

JSTOR: links.jstor.org - Therneau, T. (1993). How many stratification factors are ‘too many’ to use in a randomization plan.
*Controlled Clin. Trials***14**98–108. - Titterington, D. M. (1983). On constrained balance randomization for clinical trials.
*Biometrics***39**1083–1086. - Treasure, T. and MacRae, K. D. (1998). Minimisation: The platinum standard for trials?
*Br. Med. J.***317**362–363. - Tu, D., Shalay, K. and Pater, J. (2000). Adjustment of treatment effect for covariates in clinical trials: Statistical and regulatory issues.
*Drug Inf. J.***34**511–523. - Wei, L. J. (1978). An application of an urn model to the design of sequential controlled clinical trials.
*J. Amer. Statist. Assoc.***72**382–386.Mathematical Reviews (MathSciNet): MR514157

Zentralblatt MATH: 0389.62067

Digital Object Identifier: doi:10.2307/2286600 - Zelen, M. (1974). The randomization and stratification of patients to clinical trials.
*J. Chron. Dis.***27**365–375. - Zhang, L.-X., Hu, F., Cheung, S. H. and Chan, W. S. (2007). Asymptotic properties of covariate-adjusted response-adaptive designs.
*Ann. Statist.***35**1166–1182.Mathematical Reviews (MathSciNet): MR2341702

Zentralblatt MATH: 1118.62124

Digital Object Identifier: doi:10.1214/009053606000001424

Project Euclid: euclid.aos/1185304002

### More like this

- Ethics and Statistics in Randomized Clinical Trials

Royall, Richard M., Statistical Science, 1991 - Bayesian Statistics and the Efficiency and Ethics of Clinical Trials

Berry, Donald A., Statistical Science, 2004 - Which design is better? Ehrenfest urn versus biased coin

Chen, Yung-Pin, Advances in Applied Probability, 2000

- Ethics and Statistics in Randomized Clinical Trials

Royall, Richard M., Statistical Science, 1991 - Bayesian Statistics and the Efficiency and Ethics of Clinical Trials

Berry, Donald A., Statistical Science, 2004 - Which design is better? Ehrenfest urn versus biased coin

Chen, Yung-Pin, Advances in Applied Probability, 2000 - Exact properties of Efron’s biased coin randomization procedure

Markaryan, Tigran and Rosenberger, William F., The Annals of Statistics, 2010 - Bayesian Dose Finding for Combined Drugs with Discrete and Continuous Doses

Huo, Lin, Yuan, Ying, and Yin, Guosheng, Bayesian Analysis, 2012 - Investigating Therapies of Potentially Great Benefit: ECMO

Ware, James H., Statistical Science, 1989 - Flexible covariate-adjusted exact tests of randomized treatment effects with application to a trial of HIV education

Stephens, Alisa J., Tchetgen Tchetgen, Eric J., and De Gruttola, Victor, The Annals of Applied Statistics, 2013 - Sequential monitoring with conditional randomization tests

Plamadeala, Victoria and Rosenberger, William F., The Annals of Statistics, 2012 - Asymptotic properties of covariate-adaptive randomization

Hu, Yanqing and Hu, Feifang, The Annals of Statistics, 2012 - Multi-objective optimal designs in comparative clinical trials with covariates: The reinforced doubly adaptive biased coin design

Baldi Antognini, Alessandro and Zagoraiou, Maroussa, The Annals of Statistics, 2012