Statistical Science

Comment: Performance of Double-Robust Estimators When “Inverse Probability” Weights Are Highly Variable

James Robins, Mariela Sued, Quanhong Lei-Gomez, and Andrea Rotnitzky

Full-text: Open access

Article information

Source
Statist. Sci., Volume 22, Number 4 (2007), 544-559.

Dates
First available in Project Euclid: 7 April 2008

Permanent link to this document
https://projecteuclid.org/euclid.ss/1207580169

Digital Object Identifier
doi:10.1214/07-STS227D

Mathematical Reviews number (MathSciNet)
MR2420460

Zentralblatt MATH identifier
1246.62076

Citation

Robins, James; Sued, Mariela; Lei-Gomez, Quanhong; Rotnitzky, Andrea. Comment: Performance of Double-Robust Estimators When “Inverse Probability” Weights Are Highly Variable. Statist. Sci. 22 (2007), no. 4, 544--559. doi:10.1214/07-STS227D. https://projecteuclid.org/euclid.ss/1207580169


Export citation

References

  • Bang, H. and Robins, J. M. (2005). Doubly robust estimation in missing data and causal inference models. Biometrics 61 962–972.
  • Robins, J. M. (2000). Robust estimation in.sequentially ignorable missing data and casual inference models. Proc. Amer. Statist. Assoc. Section on Bayesian Statistical Science 1999 6–10.
  • Robins, J. M. (2002). Commentary on “Using inverse weighting and predictive inference to estimate the effects of time-varying treatments on the discrete-time hazard”, by Dawson. and Lavori. Statistics in Medicine 21 1663–1680.
  • Robins, J. M. and Rotnitzky, A. (2001). Comment on “Inference for semiparametric models: Some questions and an answer,” by P. J. Bickel and J. Kwon. Statist. Sinica 11 920–936.
  • Robins, J. M. and Wang, N. (2000). Inference for imputation estimators. Biometrika 87 113–124.
  • Robins, J. M., Rotnitzky, A. and Zhao L.-P. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. J. Amer. Statist. Assoc. 90 106–121.
  • Robins, J. M., Li, L., Tchetgen, F. and van der Vaart, A. W. (2007). Higher order influence functions and minimax estimation of nonlinear functionals. In IMS Lecture Notes–Monograph Series Probability and Statistics Models: Essays in Honor of David A. Freedman 2 335–421.
  • Robins, J. M., Sued, M., Lei-Gomez, Q. and Rotnitzky, A. (2007). Double-robustness with improved efficiency in missing and causal inference models. Technical report, Harvard School of Public Health.
  • Rosenbaum, P. R. (2002). Observational Studies, 2nd ed. Springer, New York.
  • Scharfstein, D. O., Rotnitzky, A. and Robins, J. M. (1999). Adjusting for nonignorable drop-out using semiparametric non-response models (with discussion). J. Amer. Statist. Assoc. 94 1096–1146.
  • Tan, Z. (2006). A distributional approach for causal inference using propensity scores. J. Amer. Statist. Assoc. 101 1619–1637.
  • van der Laan, M. J. and Robins, J. M. (2003). Unified Methods for Censored Longitudinal Data and Causality. Springer, New York.
  • van der Laan, M. J. and Rubin, D. (2006). Targeted maximum likelihood learning. U.C. Berkeley Division of Biostatistics Working Paper Series. Available at http://www.bepress.com/ucbbiostat/paper213/.
  • van der Laan, M. (2005). Statistical inference for variable importance. U.C. Berkeley Division of Biostatistics Working Paper Series. Available at http://www.bepress.com/ucbbiostat/paper188/.
  • Wang, Y., Petersen, M., Bangsberg, D. and van der Laan, M. (2006). Diagnosing bias in the inverse probability of treatment weighted estimator resulting from violation of experimental treatment assignment. U.C. Berkeley Division of Biostatistics Working Paper Series. Available at http://www.bepress.com/ucbbiostat/paper211/.