Statistical Science

Majorization: Here, There and Everywhere

Barry C. Arnold

Full-text: Open access

Abstract

The appearance of Marshall and Olkin’s 1979 book on inequalities with special emphasis on majorization generated a surge of interest in potential applications of majorization and Schur convexity in a broad spectrum of fields. After 25 years this continues to be the case. The present article presents a sampling of the diverse areas in which majorization has been found to be useful in the past 25 years.

Article information

Source
Statist. Sci., Volume 22, Number 3 (2007), 407-413.

Dates
First available in Project Euclid: 2 January 2008

Permanent link to this document
https://projecteuclid.org/euclid.ss/1199285040

Digital Object Identifier
doi:10.1214/0883423060000000097

Mathematical Reviews number (MathSciNet)
MR2416816

Zentralblatt MATH identifier
1246.01010

Keywords
Inequalities Schur convex covering waiting time paired comparisons phase type catchability disease transmission apportionment statistical mechanics random graph

Citation

Arnold, Barry C. Majorization: Here, There and Everywhere. Statist. Sci. 22 (2007), no. 3, 407--413. doi:10.1214/0883423060000000097. https://projecteuclid.org/euclid.ss/1199285040


Export citation

References

  • Aldous, D. and Shepp, L. (1987). The least variable phase type distribution is Erlang. Comm. Statist. Stochastic Models 3 467--473.
  • Arnold, B. C. (1987). Majorization and the Lorenz Order: A Brief Introduction. Springer, Berlin.
  • Balinski, M. L. and Young, H. P. (2001). Fair Representation Meeting the Idea of One Man, One Vote, 2nd ed. Brookings Institute Press, Washington, DC.
  • Dalal, S. R. and Fortini, P. (1982). An inequality comparing sums and maxima with application to Behrens--Fisher type problem. Ann. Statist. 10 297--301.
  • Eisenberg, B. (1991). The effect of variable infectivity on the risk of HIV infection. Statist. Medicine 9 131--139.
  • Hardy, G. H., Littlewood, J. E. and Pólya, G. (1929). Some simple inequalities satisfied by convex functions. Messenger of Mathematics 58 145--152.
  • Hardy, G. H., Littlewood, J. E. and Pólya, G. (1934). Inequalities. Cambridge Univ. Press.
  • Huffer, F. W. and Shepp, L. A. (1987). On the probability of covering the circle by random arcs. J. Appl. Probab. 24 422--429.
  • Joe, H. (1988). Majorization, entropy and paired comparisons. Ann. Statist. 16 915--925.
  • Marshall, A. W. and Olkin, I. (1979). Inequalities: Theory of Majorization and Its Applications. Academic Press, New York.
  • Marshall, A. W., Olkin, I. and Pukelsheim, F. (2002). A majorization comparison of apportionment methods in proportional representation. Soc. Choice Welf. 19 885--900.
  • Nayak, T. K. and Christman, M. C. (1992). Effect of unequal catchability on estimates of the number of classes in a population. Scand. J. Statist. 19 281--287.
  • Neuts, M. F. (1975). Computational uses of the method of phases in the theory of queues. Comput. Math. Appl. 1 151--166.
  • O'Cinneide, C. A. (1991). Phase-type distributions and majorization. Ann. Appl. Probab. 1 219--227.
  • Ross, S. (1981). A random graph. J. Appl. Probab. 18 309--315.
  • Ross, S. (1999). The mean waiting time for a pattern. Probab. Engrg. Inform. Sci. 13 1--9.
  • Stevens, W. L. (1939). Solution to a geometrical problem in probability. Ann. Eugenics 9 315--320.
  • Tong, Y. L. (1997). Some majorization orderings of heterogeneity in a class of epidemics. J. Appl. Probab. 34 84--93.
  • Zylka, C. (1985). A note on the attainability of states by equalizing processes. Theor. Chim. Acta 68 363--377.