Statistical Science

Comment: Struggles with Survey Weighting and Regression Modeling

Roderick J. Little

Full-text: Open access

Article information

Source
Statist. Sci., Volume 22, Number 2 (2007), 171-174.

Dates
First available in Project Euclid: 27 September 2007

Permanent link to this document
https://projecteuclid.org/euclid.ss/1190905514

Digital Object Identifier
doi:10.1214/088342307000000186

Mathematical Reviews number (MathSciNet)
MR2408954

Zentralblatt MATH identifier
1246.62056

Citation

Little, Roderick J. Comment: Struggles with Survey Weighting and Regression Modeling. Statist. Sci. 22 (2007), no. 2, 171--174. doi:10.1214/088342307000000186. https://projecteuclid.org/euclid.ss/1190905514


Export citation

References

  • Bang, H. and Robins, J. M. (2005). Doubly robust estimation in missing data and causal inference models. Biometrics 61 962--972.
  • Basu, D. (1971). An essay on the logical foundations of survey sampling. I (with discussion). In Foundations of Statistical Inference (V. P. Godambe and D. A. Sprott, eds.) 203--242. Holt, Rinehart and Winston, Toronto.
  • Binder, D. A. (1983). On the variances of asymptotically normal estimators from complex surveys. Internat. Statist. Rev. 51 279--292.
  • Firth, D. and Bennett, K. E. (1998). Robust models in probability sampling. J. R. Stat. Soc. Ser. B Stat. Methodol. 60 3--21.
  • Godambe, V. P. and Thompson, M. E. (1986). Parameters of superpopulation and survey population: Their relationships and estimation. Internat. Statist. Rev. 54 127--139.
  • Little, R. J. A. (1983). Comment on ``An evaluation of model-dependent and probability-sampling inferences in sample surveys,'' by M. H. Hansen, W. G. Madow and B. J. Tepping. J. Amer. Statist. Assoc. 78 797--799.
  • Little, R. J. A. (1991). Inference with survey weights. J. Official Statistics 7 405--424.
  • Little, R. J. A. (1993). Post-stratification: A modeler's perspective. J. Amer. Statist. Assoc. 88 1001--1012.
  • Little, R. J. A. (2004). To model or not to model? Competing modes of inference for finite population sampling. J. Amer. Statist. Assoc. 99 546--556.
  • Little, R. J. A. (2006). Calibrated Bayes: A Bayes/frequentist roadmap. Amer. Statist. 60 213--223.
  • Little, R. J. A. and An, H. (2004). Robust likelihood-based analysis of multivariate data with missing values. Statist. Sinica 14 949--968.
  • Little, R. J. A. and Zheng, H. (2007). The Bayesian approach to the analysis of finite population surveys. In Bayesian Statistics 8 (J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West, eds.) 1--20. Oxford Univ. Press.
  • Rizzo, L. (1992). Conditionally consistent estimators using only probabilities of selection in complex sample surveys. J. Amer. Statist. Assoc. 87 1166--1173.
  • Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70 41--55.
  • Rubin, D. B. (1983). Comment on ``An evaluation of model-dependent and probability-sampling inferences in sample surveys,'' by M. H. Hansen, W. G. Madow and B. J. Tepping. J. Amer. Statist. Assoc. 78 803--805.
  • Rubin, D. B. (1985). The case of propensity scores in applied Bayesian inference. In Bayesian Statistics 2 (J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.) 463--472. North-Holland, Amsterdam.
  • Särndal, C.-E., Swensson, B. and Wretman, J. H. (1992). Model Assisted Survey Sampling. Springer, New York.
  • Scharfstein, D. O., Rotnitzky, A. and Robins, J. M. (1999). Adjusting for nonignorable drop-out using semiparametric nonresponse models (with discussion). J. Amer. Statist. Assoc. 94 1096--1146.
  • Yuan, Y. and Little, R. J. A. (2007a). Model-based estimates of the finite population mean for two-stage cluster samples with unit nonresponse. Appl. Statist. 56 79--97.
  • Yuan, Y. and Little, R. J. A. (2007b). Parametric and semiparametric model-based estimates of the finite population mean for two-stage cluster samples with item nonresponse. Biometrics. To appear.
  • Zhang, G. and Little, R. J. A. (2005). Extensions of the penalized spline propensity prediction method of imputation. Proc. ASA Survey Research Methods Section. Amer. Statist. Assoc., Alexandria, VA.
  • Zheng, H. and Little, R. J. A. (2003). Penalized spline model-based estimation of the finite population total from probability-proportional-to-size samples. J. Official Statistics 19 99--117.
  • Zheng, H. and Little, R. J. A. (2004). Penalized spline nonparametric mixed models for inference about a finite population mean from two-stage samples. Survey Methodology 30 209--218.
  • Zheng, H. and Little, R. J. A. (2005). Inference for the population total from probability-proportional-to-size samples based on predictions from a penalized spline nonparametric model. J. Official Statistics 21 1--20.