Statistical Science

Rejoinder

Donald B. Rubin

Full-text: Open access

Article information

Source
Statist. Sci., Volume 21, Number 3 (2006), 319-321.

Dates
First available in Project Euclid: 20 December 2006

Permanent link to this document
https://projecteuclid.org/euclid.ss/1166642434

Digital Object Identifier
doi:10.1214/088342306000000303

Mathematical Reviews number (MathSciNet)
MR2339129

Zentralblatt MATH identifier
1246.62219

Citation

Rubin, Donald B. Rejoinder. Statist. Sci. 21 (2006), no. 3, 319--321. doi:10.1214/088342306000000303. https://projecteuclid.org/euclid.ss/1166642434


Export citation

References

  • Angrist, J. D., Imbens, G. W. and Rubin, D. B. (1996). Identification of causal effects using instrumental variables (with discussion). J. Amer. Statist. Assoc. 91 444--472.
  • Brillinger, D. R., Jones, L. V. and Tukey, J. W. (1978). Report of the statistical task force for the weather modification advisory board. The Management of Western Resources II: The Role of Statistics in Weather Resources Management. Stock no. 003-018-00091-1, U.S. Govt. Printing Office, Washington.
  • Frangakis, C. E. and Rubin, D. B. (2002). Principal stratification in causal inference. Biometrics 58 21--29.
  • Hirano, K., Imbens, G., Rubin, D. B. and Zhou, X.-H. (2000). Assessing the effect of an influenza vaccine in an encouragement design. Biostatistics 1 69--88.
  • Holland, P. W. (1986). Statistics and causal inference (with discussion). J. Amer. Statist. Assoc. 81 945--970.
  • Imbens, G. and Rubin, D. B. (1997). Bayesian inference for causal effects in randomized experiments with noncompliance. Ann. Statist. 25 305--327.
  • Lauritzen, S. (2004). Comment on ``Direct and indirect causal effects via potential outcomes,'' by D. B. Rubin. Scand. J. Statist. 31 189--192.
  • Korn, E. L., Teeter, D. M. and Baumrind, S. (2001). Using explicit clinician preferences in nonrandomized study designs. J. Statist. Plann. Inference 96 67--82.
  • Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educational Psychology 66 688--701.
  • Rubin, D. B. (1975). Bayesian inference for causality: The importance of randomization. In Proc. Social Statistics Section 233--239. Amer. Statist. Assoc., Alexandria, VA.
  • Rubin, D. B. (1978). Bayesian inference for causal effects: The role of randomization. Ann. Statist. 6 34--58.
  • Rubin, D. B. (1998). More powerful randomization-based $p$-values in double-blind trials with noncompliance. Statistics in Medicine 17 371--385.
  • Rubin, D. B. (2000). Comment on ``Causal inference without counterfactuals,'' by A. P. Dawid. J. Amer. Statist. Assoc. 95 435--438.
  • Rubin, D. B. (2004). Direct and indirect causal effects via potential outcomes (with discussion). Scand. J. Statist. 31 161--170, 189--198.
  • Sheiner, L. B. and Rubin, D. B. (1995). Intention-to-treat analysis and the goals of clinical trials. Clinical Pharmacology and Therapeutics 57 6--15.