Statistical Science

Nonparametric Inference for the Cosmic Microwave Background

Christopher R. Genovese, Christopher J. Miller, Robert C. Nichol, Mihir Arjunwadkar, and Larry Wasserman

Full-text: Open access


The cosmic microwave background (CMB), which permeates the entire Universe, is the radiation left over from just 380,000 years after the Big Bang. On very large scales, the CMB radiation field is smooth and isotropic, but the existence of structure in the Universe—stars, galaxies, clusters of galaxies, …—suggests that the field should fluctuate on smaller scales. Recent observations, from the Cosmic Microwave Background Explorer to the Wilkinson Microwave Anisotropy Probe, have strikingly confirmed this prediction.

CMB fluctuations provide clues to the Universe’s structure and composition shortly after the Big Bang that are critical for testing cosmological models. For example, CMB data can be used to determine what portion of the Universe is composed of ordinary matter versus the mysterious dark matter and dark energy. To this end, cosmologists usually summarize the fluctuations by the power spectrum, which gives the variance as a function of angular frequency. The spectrum’s shape, and in particular the location and height of its peaks, relates directly to the parameters in the cosmological models. Thus, a critical statistical question is how accurately can these peaks be estimated.

We use recently developed techniques to construct a nonparametric confidence set for the unknown CMB spectrum. Our estimated spectrum, based on minimal assumptions, closely matches the model-based estimates used by cosmologists, but we can make a wide range of additional inferences. We apply these techniques to test various models and to extract confidence intervals on cosmological parameters of interest. Our analysis shows that, even without parametric assumptions, the first peak is resolved accurately with current data but that the second and third peaks are not.

Article information

Statist. Sci., Volume 19, Number 2 (2004), 308-321.

First available in Project Euclid: 14 January 2005

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Confidence sets nonparametric regression cosmology


Genovese, Christopher R.; Miller, Christopher J.; Nichol, Robert C.; Arjunwadkar, Mihir; Wasserman, Larry. Nonparametric Inference for the Cosmic Microwave Background. Statist. Sci. 19 (2004), no. 2, 308--321. doi:10.1214/088342304000000161.

Export citation


  • Papers below with references to astro-ph numbers can be found on-line in multiple formats at In addition, the following Websites have useful introductory material about WMAP and the CMB:
  • Balbi, A., Baccigalupi, C., Perrotta, F., Matarrese, S. and Vittorio, N. (2003). Probing dark energy with the cosmic microwave background: Projected constraints from the Wilkinson Microwave Anisotropy Probe and Planck. Astrophysical J. Letters 588 L5--L8.
  • Bennett, C. L. et al. (2003). First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results. Astrophysical J. Supplement Series 148 1--27.
  • Beran, R. (2000). REACT scatterplot smoothers: Superefficiency through basis economy. J. Amer. Statist. Assoc. 95 155--171.
  • Beran, R. and Dümbgen, L. (1998). Modulation of estimators and confidence sets. Ann. Statist. 26 1826--1856.
  • Croft, R. A. C. et al. (2002). Toward a precise measurement of matter clustering: Ly-alpha forest data at redshifts 2--4. Astrophysical J. 581 20--52.
  • Gnedin, N. Y. and Hamilton, A. J. S. (2002). Matter power spectrum from the Lyman-alpha forest: Myth or reality? Monthly Notices of the Royal Astronomical Society 334 107--116.
  • Halverson, N. W. et al. (2002). Degree Angular Scale Interferometer first results: A measurement of the cosmic microwave background angular power spectrum. Astrophysical J. 568 38--45.
  • Hinshaw, G. et al. (2003). First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: The angular power spectrum. Astrophysical J. Supplement 148 135--159.
  • Hu, W. (1999). CMB anisotropies: A decadal survey. In Birth and Evolution of the Universe: RESCEU 1999. Universal Academy Press, Tokyo. (astro-ph/0002520.)
  • Hu, W. (2000). The physics of CMB anisotropies and their cosmological implications. Warner Prize Lecture, American Astronomical Society Meeting, San Diego, Jan. 2000. Available at$\sim$whu/Presentations/ warnerprint.pdf.
  • Hu, W. (2003). CMB temperature and polarization anisotropy fundamentals. Ann. Physics 303 203--225. (astro-ph/0210696.)
  • Hu, W. and Dodelson, S. (2002). Cosmic microwave background anisotropies. Annual Review of Astronomy and Astrophysics 40 171--216. (astro-ph/0110414.)
  • Hu, W. and Sugiyama, N. (1995). Toward understanding CMB anisotropies and their implications Phys. Rev. D 51 2599--2630.
  • Knox, L. (1999). Cosmic microwave background anisotropy window revisited. Phys. Rev. D 60 103516.
  • Kuo, C.-L. et al. (2004). High resolution observations of the CMB power spectrum with ACBAR. Astrophysical J. 600 32--51. (astro-ph/0212289.)
  • Lee, A. T. et al. (2001). A high spatial resolution analysis of the MAXIMA-1 cosmic microwave background anisotropy data. Astrophysical J. Letters 561 L1--L6.
  • Marinucci, D. (2004). Testing for non-Gaussianity on cosmic microwave background radiation: A review. Statist. Sci. 19 294--307.
  • Mason, B. S. et al. (2003). The anisotropy of the microwave background to $l = 3500$: Deep field observations with the Cosmic Background Imager. Astrophysical J. 591 540--555.
  • Netterfield, C. B. et al. (2002). A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background. Astrophysical J. 571 604--614.
  • Pearson, T. J. et al. (2003). The anisotropy of the microwave background to $l = 3500$: Mosaic observations with the Cosmic Background Imager. Astrophysical J. 591 556--574.
  • Percival, W. J. et al. (2001). The 2dF Galaxy Redshift Survey: The power spectrum and the matter content of the Universe. Monthly Notices of the Royal Astronomical Society 327 1297--1306.
  • Ruppert, D., Wand, M. and Carroll, R. (2003). Semiparametric Regression. Cambridge Univ. Press.
  • Schwarz, D. J. (2003). The first second of the Universe. Ann. Phys. 12 220--270. (astro-ph/0303574.)
  • Seljak, U. and Zaldarriaga, M. (1996). A line-of-sight integration approach to cosmic microwave background anisotropies. Astrophysical J. 469 437--444.
  • Sievers, J. L. et al. (2003). Cosmological parameters from Cosmic Background Imager observations and comparisons with BOOMERANG, DASI, and MAXIMA. Astrophysical J. 591 599--622.
  • Smoot, G. et al. (1992). Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. Letters 396 L1--L5.
  • Spergel, D. et al. (2003). First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters. Astrophysical J. Supplement 148 175--194.
  • Stein, C. (1981). Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9 1135--1151.
  • Sun, J. and Loader, C. R. (1994). Simultaneous confidence bands for linear regression and smoothing. Ann. Statist. 22 1328--1345.