Statistical Science

Geographic and Network Surveillance via Scan Statistics for Critical Area Detection

G. P. Patil and C. Taillie

Full-text: Open access

Abstract

Both statistical ecology and environmental statistics have numerous challenges and opportunities in the waiting for the twenty-first century, calling for increasing numbers of nontraditional statistical approaches. Both theoretical and applied ecology are using advancing data analytical and interpretational software and hardware to satisfy public policy and discovery research, variously incorporating geospatial information, site-specific data and remote sensing imagery. We discuss a declared need for geoinformatic surveillance for spatial critical area detection. We explore, for ecological and environmental use, an innovation of the circle-based spatial scan statistic popular in the health sciences.

Article information

Source
Statist. Sci., Volume 18, Number 4 (2003), 457-465.

Dates
First available in Project Euclid: 8 April 2004

Permanent link to this document
https://projecteuclid.org/euclid.ss/1081443229

Digital Object Identifier
doi:10.1214/ss/1081443229

Mathematical Reviews number (MathSciNet)
MR2109372

Zentralblatt MATH identifier
1055.62133

Keywords
Geoinformatic surveillance hot-spot detection Monte Carlo hypothesis testing upper level set upper level set scan statistic

Citation

Patil, G. P.; Taillie, C. Geographic and Network Surveillance via Scan Statistics for Critical Area Detection. Statist. Sci. 18 (2003), no. 4, 457--465. doi:10.1214/ss/1081443229. https://projecteuclid.org/euclid.ss/1081443229


Export citation

References

  • Aarts, E. and Korst, J. (1989). Simulated Annealing and Boltzmann Machines. Wiley, New York.
  • Alm, S. E. (1997). On the distributions of scan statistics of a two-dimensional Poisson process. Adv. in Appl. Probab. 29 1–18.
  • Alm, S. E. (1998). Approximation and simulation of the distributions of scan statistics for Poisson processes in higher dimensions. Extremes 1 111–126.
  • Anderson, N. H. and Titterington, D. M. (1997). Some methods for investigating spatial clustering with epidemiological applications. J. Roy. Statist. Soc. Ser. A 160 87–105.
  • Biomedware (2001). Software for the Environmental and Health Sciences. Biomedware, Ann Arbor, MI.
  • Bithell, J. F., Dutton, S. J., Neary, N. M. and Vincent, T. J. (1995). Controlling for socioeconomic confounding using regression methods. J. Epidemiology and Community Health 49 S15–S19.
  • Bryant, G. and Monk, P. (2001). Final report of the investigation into the North Leicestershire cluster of variant Creutzfeldt–Jakob disease. NHS Leicestershire Health Authority, Leicestershire, UK. Available at http://www.cbsnews.com/htdocs/ pdf/vcjd.pdf.
  • Chen, J. and Glaz, J. (1996). Two-dimensional discrete scan statistics. Statist. Probab. Lett. 31 59–68.
  • Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. (2001). Introduction to Algorithms, 2nd ed. MIT Press, Cambridge, MA.
  • Cousens, S., Smith, P. G., Ward, H., Everington, D., Knight, R. S. G., Zeidler, M., Stewart, G. et al. (2001). Geographic distribution of variant Creutzfeldt–Jakob disease in Great Britain, 1994–2000. The Lancet 357 1002–1007.
  • Cressie, N. (1991). Statistics for Spatial Data. Wiley, New York.
  • d'Aignaux, J. H., Cousens, S. N., Delasnerie-Lauprêtre, N., Brandel, J.-P., Salomon, D. et al. (2002). Analysis of the geographical distribution of sporadic Creutzfeldt–Jakob disease in France between 1992 and 1998. Internat. J. Epidemiology 31 490–495.
  • Duczmal, L. and Assunção, R. (2004). A simulated annealing strategy for the detection of arbitrarily shaped spatial clusters. Comput. Statist. Data Anal. 45 269–286.
  • Dwass, M. (1957). Modified randomization tests for nonparametric hypotheses. Ann. Math. Statist. 28 181–187.
  • Evans, B. M., Lehning, D. W., Corradini, K. J., Petersen, G. W., Nizeyimana, E., Hamlett, J. M., Robillard, P. D. and Day, R. L. (2002). A comprehensive GIS-based modeling approach for predicting nutrient loads in watersheds. J. Spatial Hydrology 2(2), 18 pages.
  • Glaz, J. and Balakrishnan, N., eds. (1999). Scan Statistics and Applications. Birkhäuser, Boston.
  • Glaz, J., Naus, J. and Wallenstein, S. (2001). Scan Statistics. Springer, New York.
  • Hawkins, C. P., Norris, R. H., Hogue, J. N. and Feminella, J. W. (2000). Development and evaluation of predictive models for measuring the biological integrity of streams. Ecological Applications 10 1456–1477.
  • Johnson, G. and Patil, G. P. (2004). Landscape Pattern Analysis for Assessing Ecosystem Condition. Kluwer, Boston. To appear.
  • Knjazew, D. (2002). OmeGA: A Competent Genetic Algorithm for Solving Permutation and Scheduling Problems. Kluwer, Boston.
  • Knuth, D. E. (1973). The Art of Computer Programming 1. Fundamental Algorithms, 2nd ed. Addison-Wesley, Reading, MA.
  • Kulldorff, M. (1997). A spatial scan statistic. Comm. Statist. Theory Methods 26 1481–1496.
  • Kulldorff, M. (2001). Prospective time-periodic geographical disease surveillance using a scan statistic. J. Roy. Statist. Soc. Ser. A 164 61–72.
  • Kulldorff, M., Athas, W. F., Feuer, E. J., Miller, B. A. and Key, C. R. (1998a). Evaluating cluster alarms: A space–time scan statistic and brain cancer in Los Alamos, New Mexico. Amer. J. Public Health 88 1377–1380.
  • Kulldorff, M., Feuer, E. J., Miller, B. A. and Freedman, L. S. (1997). Breast cancer clusters in the northeast United States: A geographic analysis. Amer. J. Epidemiology 146 161–170.
  • Kulldorff, M. and Nagarwalla, N. (1995). Spatial disease clusters: Detection and inference. Statistics in Medicine 14 799–810.
  • Kulldorff, M., Rand, K., Gherman, G., Williams, G. and DeFrancesco, D. (1998b). SaTScan v 2.1: Software for the Spatial and Space–Time Scan Statistics. National Cancer Institute, Bethesda, MD.
  • Loader, C. R. (1991). Large-deviation approximations to the distribution of scan statistics. Adv. in Appl. Probab. 23 751–771.
  • Mortensen, D. A., Bastiaans, L. and Sattin, M. (2000). The role of ecology in the development of weed management systems: An outlook. Weed Research 40 49–62.
  • Mortensen, D. A., Dieleman, J. A. and Williams, M. M. (2003). Using remote sensing in integrated weed management: What do we need to see? Agronomy J. To appear.
  • Mortensen, D. A., Johnson, G. A. and Young, L. J. (1993). Weed distributions in agricultural fields. In Proc. Soil Specific Crop Management (P. C. Robert, R. H. Rust and W. E. Larson, eds.) 113–124. American Society of Agronomy, Madison, WI.
  • Mostashari, F., Kulldorff, M. and Miller, J. (2002). Dead bird clustering: A potential early warning system for West Nile virus activity. New York City Department of Health, New York, NY.
  • Myers, W. L. and Patil, G. P. (2002). Echelon analysis. In Encyclopedia of Environmetrics 2 583–586. Wiley, New York.
  • Myers, W. L. and Patil, G. P. (2004). Doubly Segmented Images and Landscape Indicators for GIS Analysis: With Emphasis on Investigation of Landscape Change. Kluwer, Boston. To appear.
  • Naus, J. (1965a). The distribution of the size of the maximum cluster of points on a line. J. Amer. Statist. Assoc. 60 532–538.
  • Naus, J. (1965b). Clustering of random points in two dimensions. Biometrika 52 263–267.
  • Patil, G. P. (1996). Statistical ecology, environmental statistics, and risk assessment. In Advances in Biometry: 50 Years of the International Biometric Society (P. Armitage and H. A. David, eds.) 213–240. Wiley, New York.
  • Patil, G. P. (2002). Next generation of potential outbreak detection and prioritization system. Invited comment and discussion, National Syndromic Surveillance Conference, New York City. Available at http://www.stat.psu.edu/$\sim$ gpp/PDFfiles/SyndromicSurveillance%20Comment.pdf.
  • Patil, G. P., Bishop, J., Myers, W. L., Taillie, C., Vraney, R. and Wardrop, D. H. (2004). Detection and delineation of critical areas using echelons and spatial scan statistics with synoptic cellular data. Environ. Ecol. Stat. 11. To appear.
  • Patil, G. P., Brooks, R. P., Myers, W. L., Rapport, D. J. and Taillie, C. (2001). Ecosystem health and its measurement at landscape scale: Toward the next generation of quantitative assessments. Ecosystem Health 7 307–316.
  • Patil, G. P., Johnson, G., Myers, W. L. and Taillie, C. (2000). Multiscale statistical approach to critical-area analysis and modeling of watersheds and landscapes. In Statistics for the 21st Century: Methodologies for Applications of the Future (C. R. Rao and G. J. Székely, eds.) 293–310. Dekker, New York.
  • Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992). Numerical Recipes in C, 2nd ed. Cambridge Univ. Press.
  • Rogerson, P. A. (2001). Monitoring point patterns for the development of space–time clusters. J. Roy. Statist. Soc. Ser. A 164 87–96.
  • Strahler, A., Muchoney, D., Borak, J., Friedl, M., Gopal, S., Lambin, E. and Moody, A. (1999). MODIS land cover product, algorithm theoretical basis document (ATBD), version 5.0. Available at http://modis.gsfc.nasa.gov/ data/atdb/atbd_mod12. pdf.
  • Turnbull, B., Iwano, E. J., Burnett, W. S., Howe, H. L. and Clark, L. C. (1990). Monitoring for clusters of disease: Application to leukemia incidence in upstate New York. Amer. J. Epidemiology 132 136–143.
  • VanEenwyk, J., Bensley, L., McBride, D., Hoskins, R., Solet, D., Brown, A. M., Topiwala, H., Richter, A. and Clark, R. (1999). Addressing community health concerns around SeaTac airport. Second Report on the Work Plan Proposed in August 1998, Washington State Department of Health, Olympia, WA. Available at http://www.doh.wa.gov/ EHSPHL/Epidemiology/NICE/publications/Seatac_Report2. pdf.
  • Waller, L. (2003). Methods for detecting disease clustering in time or space. In Monitoring the Health of Populations: Statistical Principles and Methods for Public Health Surveillance (R. Brookmeyer and D. Stroup, eds.). Oxford Univ. Press.
  • Walsh, S. J. and DeChello, L. M. (2001). Geographical variation in mortality from systemic lupus erythematosus in the United States. Lupus 10 637–646.
  • Walsh, S. J. and Fenster, J. R. (1997). Geographical clustering of mortality from systemic sclerosis in the Southeastern United States, 1981–1990. J. Rheumatology 24 2348–2352.
  • Wardrop, D. H., Bishop, J. A., Easterling, M., Hychka, K., Myers, W. L., Patil, G. P., and Taillie, C. (2004). Use of landscape and land use parameters for classification and characterization of watersheds in the Mid-Atlantic across five physiographic provinces. Environ. Ecol. Stat. 11. To appear.
  • Winkler, G. (1995). Image Analysis, Random Fields and Dynamic Monte Carlo Methods. Springer, New York.
  • Wofsy, S. C. and Harriss, R. C. (2002). The North American Carbon Program (NACP). Report of the NACP Committee of the U.S. Carbon Cycle Science Steering Group, U.S. Global Change Research Program, Washington, DC. Available at http://www.carboncyclescience.gov/nacp.pdf.
  • Zhan, X., DeFries, R. S., Hansen, M. C., Townshend, J. R. G., DiMiceli, C. M., Sohlberg, R. and Huang, C. (1999). MODIS enhanced land cover and land cover change product, algorithm theoretical basis documents (ATBD), version 2.0. Available at http://modis.umiacs. umd.edu/reports/atbd_mod29.pdf.
  • Zhan, X., DeFries, R. S., Townshend, J. R. G., DiMiceli, C. M., Hansen, M. C., Huang, C. and Sohlberg, R. (2000). The 250 m global land cover change product from the moderate resolution imaging spectroradiometer of NASA's Earth observing system. Internat. J. Remote Sensing 21 1433–1460.