Statistical Science

A Short Prehistory of the Bootstrap

Peter Hall

Full-text: Open access

Abstract

The contemporary development of bootstrap methods, from the time of Efron's early articles to the present day, is well documented and widely appreciated. Likewise, the relationship of bootstrap techniques to certain early work on permutation testing, the jackknife and cross-validation is well understood. Less known, however, are the connections of the bootstrap to research on survey sampling for spatial data in the first half of the last century or to work from the 1940s to the 1970s on subsampling and resampling. In a selective way, some of these early linkages will be explored, giving emphasis to developments with which the statistics community tends to be less familiar. Particular attention will be paid to the work of P. C. Mahalanobis, whose development in the 1930s and 1940s of moving-block sampling methods for spatial data has a range of interesting features, and to contributions of other scientists who, during the next 40 years, developed half-sampling, subsampling and resampling methods.

Article information

Source
Statist. Sci., Volume 18, Issue 2 (2003), 158-167.

Dates
First available in Project Euclid: 19 September 2003

Permanent link to this document
https://projecteuclid.org/euclid.ss/1063994970

Digital Object Identifier
doi:10.1214/ss/1063994970

Mathematical Reviews number (MathSciNet)
MR2026077

Zentralblatt MATH identifier
1331.62018

Keywords
Block bootstrap computer-intensive statistics confidence interval half-sample Monte Carlo moving block resampling permutation test resample sample survey statistical experimentation sub-sample

Citation

Hall, Peter. A Short Prehistory of the Bootstrap. Statist. Sci. 18 (2003), no. 2, 158--167. doi:10.1214/ss/1063994970. https://projecteuclid.org/euclid.ss/1063994970


Export citation

References

  • ANON (1963). The current population survey. A report on methodology. Technical Paper 7, U.S. Bureau of the Census, U.S. Government Printing Office, Washington.
  • Barnard, G. A. (1963). Discussion of ``Spectral analysis of point processes,'' by M. S. Bartlett. J. Roy. Statist. Soc. Ser. B 25 294.
  • Bartlett, M. S. (1946). Discussion of ``Recent experiments in statistical sampling in the Indian Statistical Institute,'' by P. C. Mahalanobis. J. Roy. Statist. Soc. 109 373.
  • Breth, M., Maritz, J. S. and Williams, J. S. (1978). On distribution-free lower confidence limits for the mean of a nonnegative random variable. Biometrika 65 529--534.
  • Chung, J. H. and Fraser, D. A. S. (1958). Randomization tests for a multivariate two-sample problem. J. Amer. Statist. Assoc. 53 729--735.
  • Cochran, W. G. (1977). Sampling Techniques, 3rd ed. Wiley, New York.
  • Davison, A. C. and Hinkley, D. V. (1997). Bootstrap Methods and Their Application. Cambridge Univ. Press.
  • Davison, A. C., Hinkley, D. V. and Schechtman, E. (1986). Efficient bootstrap simulation. Biometrika 73 555--566.
  • Deming, W. E. (1950). Some Theory of Sampling. Wiley, New York.
  • Deming, W. E. (1956). On simplifications of sampling design through replication with equal probabilities and without stages. J. Amer. Statist. Assoc. 51 24--53.
  • Diaconis, P. and Efron, B. (1983). Computer-intensive methods in statistics. Scientific American 249 116--130.
  • Efron, B. (1979a). Computers and the theory of statistics: Thinking the unthinkable. SIAM Rev. 21 460--480.
  • Efron, B. (1979b). Bootstrap methods: Another look at the jackknife. Ann. Statist. 7 1--26.
  • Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans. SIAM, Philadelphia.
  • Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman and Hall, New York.
  • Fisher, R. A. (1936). ``The coefficient of racial likeness'' and the future of craniometry. J. Royal Anthropological Institute of Great Britain and Ireland 66 57--63.
  • Fisher, R. A. (1945). Memorandum to the Imperial Council of Agricultural Research in India, 2 March 1945. [Quoted by P. C. Mahalanobis, Sankhyā 7 (1946) 269.]
  • Fisher, R. A. (1966). The Design of Experiments, 8th ed. Oliver and Boyd, Edinburgh.
  • Forsythe, A. and Hartigan, J. A. (1970). Efficiency of confidence intervals generated by repeated subsample calculations. Biometrika 57 629--639.
  • Good, P. I. (1999). Resampling Methods---A Practical Guide to Data Analysis. Birkhäuser, Boston.
  • Götze, F. and Künsch, H. R. (1996). Second-order correctness of the blockwise bootstrap for stationary observations. Ann. Statist. 24 1914--1933.
  • Gurney, M. (1963). The variance of the replication method for estimating variances for the CPS sample design. Memorandum, U.S. Bureau of the Census. Unpublished.
  • Hall, P. (1985). Resampling a coverage pattern. Stochastic Process. Appl. 20 231--246.
  • Hall, P. (1989). Antithetic resampling for the bootstrap. Biometrika 76 713--724.
  • Hansen, M. H., Hurwitz, W. N. and Madow, W. G. (1953a). Sample Survey Methods and Theory 1. Methods and Applications. Wiley, New York.
  • Hansen, M. H., Hurwitz, W. N. and Madow, W. G. (1953b). Sample Survey Methods and Theory 2. Theory. Wiley, New York.
  • Hartigan, J. A. (1969). Using subsample values as typical values. J. Amer. Statist. Assoc. 64 1303--1317.
  • Hartigan, J. A. (1971). Error analysis by replaced samples. J. Roy. Statist. Soc. Ser. B 33 98--110.
  • Hartigan, J. A. (1975). Necessary and sufficient conditions for asymptotic joint normality of a statistic and its subsample values. Ann. Statist. 3 573--580.
  • Hope, A. C. A. (1968). A simplified Monte Carlo significance test procedure. J. Roy. Statist. Soc. Ser. B 30 582--598.
  • Hubback, J. A. (1946). Sampling for rice yield in Bihar and Orissa. Sankhyā 7 281--294. (First published in 1927 as Bulletin 166, Imperial Agricultural Research Institute, Pusa, India.)
  • Jones, H. L. (1956). Investigating the properties of a sample mean by employing random subsample means. J. Amer. Statist. Assoc. 51 54--83.
  • Kish, L. (1957). Confidence intervals for clustered samples. American Sociological Review 22 154--165.
  • Künsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. Ann. Statist. 17 1217--1241.
  • Lahiri, S. N. (1996). On Edgeworth expansion and moving block bootstrap for Studentized $M$-estimators in multiple linear regression models. J. Multivariate Anal. 56 42--59.
  • Madow, W. G. and Madow, L. (1944). On the theory of systematic sampling. I. Ann. Math. Statist. 15 1--24.
  • Mahalanobis, P. C. (1940). A sample survey of the acreage under jute in Bengal. Sankhyā 4 511--530.
  • Mahalanobis, P. C. (1946a). On large-scale sample surveys. Philos. Trans. Roy. Soc. London Ser. B 231 329--451.
  • Mahalanobis, P. C. (1946b). Report on the Bihar crop survey: Rabi season 1943--44. Sankhyā 7 29--106.
  • Mahalanobis, P. C. (1946c). Sample surveys of crop yields in India. Sankhyā 7 269--280.
  • Mahalanobis, P. C. (1946d). Recent experiments in statistical sampling in the Indian Statistical Institute (with discussion). J. Roy. Statist. Soc. 109 325--378. [Reprinted, including discussion, in Sankhyā 20 (1958) 329--397.]
  • Mammen, E. (1992). When Does Bootstrap Work? Asymptotic Results and Simulations. Lecture Notes in Statist. 77. Springer, New York.
  • Maritz, J. S. (1979). A note on exact robust confidence intervals for location. Biometrika 66 163--166.
  • Maritz, J. S. and Jarrett, R. G. (1978). A note on estimating the variance of the sample median. J. Amer. Statist. Assoc. 73 194--196.
  • McCarthy, P. J. (1966). Replication: An approach to the analysis of data from complex surveys. Vital Health Statistics. Public Health Service Publication 1000, Series 2, No. 14, National Center for Health Statistics, Public Health Service, U.S. Government Printing Office, Washington.
  • McCarthy, P. J. (1969). Pseudo-replication: Half samples. Review of the International Statistical Institute 37 239--264.
  • Pitman, E. J. G. (1937). Significance tests which may be applied to samples from any populations. Suppl. J. Roy. Statist. Soc. 4 119--130.
  • Politis, D. N. and Romano, J. P. (1993). Nonparametric resampling for homogeneous strong mixing random fields. J. Multivariate Anal. 47 301--328.
  • Politis, D. N. and Romano, J. P. (1994). Large sample confidence regions based on subsamples under minimal assumptions. Ann. Statist. 22 2031--2050.
  • Politis, D. N., Romano, J. P. and Wolf, M. (1999). Subsampling. Springer, New York.
  • Quenouille, M. H. (1949). Approximate tests of correlation in time-series. Proc. Cambridge Philos. Soc. 45 483--484.
  • Quenouille, M. H. (1956). Notes on bias in estimation. Biometrika 43 353--360.
  • Rubin, D. B. (1981). The Bayesian bootstrap. Ann. Statist. 9 130--134.
  • Shao, J. and Tu, D. (1995). The Jackknife and Bootstrap. Springer, New York.
  • Sherman, M. (1996). Variance estimation for statistics computed from spatial lattice data. J. Roy. Statist. Soc. Ser. B 58 509--523.
  • Shiue, C.-J. (1960). Systematic sampling with multiple random starts. Forest Science 6 42--50.
  • Simon, J. (1969). Basic Research Methods in Social Science. The Art of Empirical Investigation. Random House, New York.
  • Simon, J. (1993). Resampling: The New Statistics. Duxbury, Belmont, CA.
  • Stigler, S. M. (1991). Stochastic simulation in the nineteenth century. Statist. Sci. 6 89--97.
  • Stigler, S. M. (1999). Statistics On the Table: The History of Statistical Concepts and Methods. Harvard Univ. Press, Cambridge, MA.
  • Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions (with discussion). J. Roy. Statist. Soc. Ser. B 36 111--147.
  • Tukey, J. (1958). Bias and confidence in not-quite large samples (abstract). Ann. Math. Statist. 29 614.
  • Wald, A. and Wolfowitz, J. (1944). Statistical tests based on permutations of the observations. Ann. Math. Statist. 15 358--372.
  • Wattenberg, B. (1998). Malthus, watch out (Julian Simon obituary). Wall Street Journal, February 11.
  • Welch, B. L. (1937). On the $z$-test in randomized blocks and Latin squares. Biometrika 29 21--52.