Statistical Science

Multiple Hypothesis Testing in Microarray Experiments

Sandrine Dudoit, Juliet Popper Shaffer, and Jennifer C. Boldrick

Full-text: Open access


DNA microarrays are part of a new and promising class of biotechnologies that allow the monitoring of expression levels in cells for thousands of genes simultaneously. An important and common question in DNA microarray experiments is the identification of differentially expressed genes, that is, genes whose expression levels are associated with a response or covariate of interest. The biological question of differential expression can be restated as a problem in multiple hypothesis testing: the simultaneous test for each gene of the null hypothesis of no association between the expression levels and the responses or covariates. As a typical microarray experiment measures expression levels for thousands of genes simultaneously, large multiplicity problems are generated. This article discusses different approaches to multiple hypothesis testing in the context of DNA microarray experiments and compares the procedures on microarray and simulated data sets.

Article information

Statist. Sci., Volume 18, Issue 1 (2003), 71-103.

First available in Project Euclid: 23 June 2003

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Multiple hypothesis testing adjusted p-value family-wise Type I error rate false discovery rate permutation DNA microarray.


Dudoit, Sandrine; Shaffer, Juliet Popper; Boldrick, Jennifer C. Multiple Hypothesis Testing in Microarray Experiments. Statist. Sci. 18 (2003), no. 1, 71--103. doi:10.1214/ss/1056397487.

Export citation


  • Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., Rosenwald, A., Boldrick, J. C., Sabet, H., Tran, T., Yu, X., Powell, J. I., Yang, L., Marti, G. E., Moore, T., Hudson Jr., J., Lu, L., Lewis, D. B., Tibshirani, R., Sherlock, G., Chan, W. C., Greiner, T. C., Weisenburger, D. D., Armitage, J. O., Warnke, R., Levy, R., Wilson, W., Grever, M. R., Byrd, J. C., Botstein, D., Brown, P. O. and Staudt, L. M. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403 503--511.
  • Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D. and Levine, A. J. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. U.S.A. 96 6745--6750.
  • Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289--300.
  • Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Ann. Statist. 29 1165--1188.
  • Beran, R. (1988). Balanced simultaneous confidence sets. J. Amer. Statist. Assoc. 83 679--686.
  • Boldrick, J. C., Alizadeh, A. A., Diehn, M., Dudoit, S., Liu, C. L., Belcher, C. E., Botstein, D., Staudt, L. M., Brown, P. O. and Relman, D. A. (2002). Stereotyped and specific gene expression programs in human innate immune responses to bacteria. Proc. Natl. Acad. Sci. U.S.A. 99 972--977.
  • Braver, S. L. (1975). On splitting the tails unequally: A new perspective on one- versus two-tailed tests. Educational and Psychological Measurement 35 283--301.
  • Brown, P. O. and Botstein, D. (1999). Exploring the new world of the genome with DNA microarrays. Nature Genetics 21 33--37.
  • Buckley, M. J. (2000). The Spot User's Guide. CSIRO Mathematical and Information Sciences, North Ryde, NSW, Australia. Available at spotmanual.htm.
  • Callow, M. J., Dudoit, S., Gong, E. L., Speed, T. P. and Rubin, E. M. (2000). Microarray expression profiling identifies genes with altered expression in HDL-deficient mice. Genome Research 10 2022--2029.
  • Chu, G., Goss, V., Narasimhan, B. and Tibshirani, R. (2000). SAM (Significance Analysis of Microarrays)---Users guide and technical document. Technical report, Stanford Univ.
  • Dudoit, S., Shaffer, J. P. and Boldrick, J. C. (2002). Multiple hypothesis testing in microarray experiments. Technical Report 110, Division of Biostatistics, Univ. California, Berkeley. Available at paper110/.
  • Dudoit, S., Yang, Y. H., Callow, M. J. and Speed, T. P. (2002). Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Statist. Sinica 12 111--139.
  • Dunn, O. J. (1958). Estimation of the means of dependent variables. Ann. Math. Statist. 29 1095--1111.
  • Efron, B., Storey, J. D. and Tibshirani, R. (2001). Microarrays, empirical Bayes methods, and false discovery rates. Technical Report 2001-23B/217, Dept. Statistics, Stanford Univ.
  • Efron, B., Tibshirani, R., Goss, V. and Chu, G. (2000). Microarrays and their use in a comparative experiment. Technical Report 2000-37B/213, Dept. Statistics, Stanford Univ.
  • Efron, B., Tibshirani, R., Storey, J. D. and Tusher, V. (2001). Empirical Bayes analysis of a microarray experiment. J. Amer. Statist. Assoc. 96 1151--1160.
  • Finner, H. (1999). Stepwise multiple test procedures and control of directional errors. Ann. Statist. 27 274--289.
  • Gabriel, K. R. (1975). A comparison of some methods of simultaneous inference in MANOVA. In Multivariate Statistical Methods: Among-Groups Covariation (W. R. Atchley and E. H. Bryant, eds.) 61--80. Dowden, Hutchinson and Ross, Stroudsburg, PA.
  • Ge, Y., Dudoit, S. and Speed, T. P. (2003). Resampling-based multiple testing for microarray data analysis. TEST. To appear.
  • Genovese, C. and Wasserman, L. (2001). Operating characteristics and extensions of the FDR procedure. Technical Report 737, Dept. Statistics, Carnegie Mellon Univ.
  • Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D. and Lander, E. S. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286 531--537.
  • Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75 800--802.
  • Hochberg, Y. and Tamhane, A. C. (1987). Multiple Comparison Procedures. Wiley, New York.
  • Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scand. J. Statist. 6 65--70.
  • Hommel, G. (1988). A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika 75 383--386.
  • Hommel, G. and Bernhard, G. (1999). Bonferroni procedures for logically related hypotheses. J. Statist. Plann. Inference 82 119--128.
  • Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and graphics. J. Comput. Graph. Statist. 5 299--314.
  • Jogdeo, K. (1977). Association and probability inequalities. Ann. Statist. 5 495--504.
  • Kerr, M. K., Martin, M. and Churchill, G. A. (2000). Analysis of variance for gene expression microarray data. Journal of Computational Biology 7 819--837.
  • Krishnaiah, P. R. and Reising, J. M. (1985). Multivariate multiple comparisons. Encyclopedia of Statistical Sciences 6 88--95. Wiley, New York.
  • Lehmann, E. L. (1986). Testing Statistical Hypotheses, 2nd ed. Wiley, New York.
  • Lipshutz, R. J., Fodor, S., Gingeras, T. R. and Lockhart, D. J. (1999). High density synthetic oligonucleotide arrays. Nature Genetics 21 20--24.
  • Lönnstedt, I. and Speed, T. P. (2002). Replicated microarray data. Statist. Sinica 12 31--46.
  • Manduchi, E., Grant, G. R., McKenzie, S. E., Overton, G. C., Surrey, S. and Stoeckert Jr., C. J. (2000). Generation of patterns from gene expression data by assigning confidence to differentially expressed genes. Bioinformatics 16 685--698.
  • Mayo, D. and Spanos, A. (2002). A severe testing interpretation of Neyman--Pearson tests. Unpublished.
  • Morrison, D. F. (1990). Multivariate Statistical Methods, 3rd ed. McGraw-Hill, New York.
  • National Reading Panel (1999). Teaching children to read. Report, National Institute of Child Health and Human Development, National Institutes of Health.
  • Newton, M. A., Kendziorski, C. M., Richmond, C. S., Blattner, F. R. and Tsui, K. W. (2001). On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data. Journal of Computational Biology 8 37--52.
  • Pepe, M. S., Longton, G., Anderson, G. L. and Schummer, M. (2003). Selecting differentially expressed genes from microarray experiments. Biometrics 59. To appear.
  • Perou, C. M., Jeffrey, S. S., van de Rijn, M., Rees, C. A., Eisen, M. B., Ross, D. T., Pergamenschikov, A., Williams, C. F., Zhu, S. X., Lee, J. C. F., Lashkari, D., Shalon, D., Brown, P. O. and Botstein, D. (1999). Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc. Natl. Acad. Sci. 96 9212--9217.
  • Pollack, J. R., Perou, C. M., Alizadeh, A. A., Eisen, M. B., Pergamenschikov, A., Williams, C. F., Jeffrey, S. S., Botstein, D. and Brown, P. O. (1999). Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genetics 23 41--46.
  • Pollard, K. S. and van der Laan, M. J. (2003). Resampling-based multiple testing with asymptotic strong control of type I error. Submitted.
  • Ramsey, P. H. (1978). Power differences between pairwise multiple comparisons. J. Amer. Statist. Assoc. 73 479--485.
  • Reiner, A., Yekutieli, D. and Benjamini, Y. (2001). Using resampling-based FDR controlling multiple test procedures for analyzing microarray gene expression data. Unpublished.
  • Rom, D. M. (1990). A sequentially rejective test procedure based on a modified Bonferroni inequality. Biometrika 77 663--665.
  • Ross, D. T., Scherf, U., Eisen, M. B., Perou, C. M., Rees, C., Spellman, P., Iyer, V., Jeffrey, S. S., van de Rijn, M., Waltham, M., Pergamenschikov, A., Lee, J. C. F., Lashkari, D., Shalon, D., Myers, T. G., Weinstein, J. N., Botstein, D. and Brown, P. O. (2000). Systematic variation in gene expression patterns in human cancer cell lines. Nature Genetics 24 227--234.
  • Scheffé, H. (1959). The Analysis of Variance. Wiley, New York.
  • Seeger, P. (1968). A note on a method for the analysis of significances en masse. Technometrics 10 586--593.
  • Shaffer, J. P. (1986). Modified sequentially rejective multiple test procedures. J. Amer. Statist. Assoc. 81 826--831.
  • Shaffer, J. P. (1995). Multiple hypothesis testing: A review. Annual Review of Psychology 46 561--584.
  • Shaffer, J. P. (2002). Multiplicity, directional (Type III) errors, and the null hypothesis. Psychological Methods 7 356--369.
  • Šidák, Z. (1967). Rectangular confidence regions for the means of multivariate normal distributions. J. Amer. Statist. Assoc. 62 626--633.
  • Simes, R. J. (1986). An improved Bonferroni procedure for multiple tests of significance. Biometrika 73 751--754.
  • Sorić, B. (1989). Statistical ``discoveries'' and effect-size estimation. J. Amer. Statist. Assoc. 84 608--610.
  • Storey, J. D. (2001). The false discovery rate: A Bayesian interpretation and the q-value. Technical Report 2001-12, Dept. Statistics, Stanford Univ.
  • Storey, J. D. (2002). A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B Stat. Methodol. 64 479--498.
  • Storey, J. D. and Tibshirani, R. (2001). Estimating the positive false discovery rate under dependence, with applications to DNA microarrays. Technical Report 2001-28, Dept. Statistics, Stanford Univ.
  • Tibshirani, R., Hastie, T., Narasimhan, B., Eisen, M., Sherlock, G., Brown, P. and Botstein, D. (2002). Exploratory screening of genes and clusters from microarray experiments. Statist. Sinica 12 47--59.
  • Troendle, J. F. (1996). A permutational step-up method of testing multiple outcomes. Biometrics 52 846--859.
  • Tusher, V. G., Tibshirani, R. and Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. U.S.A. 98 5116--5121.
  • van der Laan, M. J. and Bryan, J. (2001). Gene expression analysis with the parametric bootstrap. Biostatistics 2 445--461.
  • Westfall, P. H. and Young, S. S. (1993). Resampling-Based Multiple Testing: Examples and Methods for $p$-Value Adjustment. Wiley, New York.
  • Westfall, P. H., Zaykin, D. V. and Young, S. S. (2001). Multiple tests for genetic effects in association studies. In Biostatistical Methods (S. Looney, ed.) 143--168. Humana, Totowa, NJ.
  • Wright, S. P. (1992). Adjusted $p$-values for simultaneous inference. Biometrics 48 1005--1013.
  • Yang, Y. H., Buckley, M. J., Dudoit, S. and Speed, T. P. (2002). Comparison of methods for image analysis on cDNA microarray data. J. Comput. Graph. Statist. 11 108--136.
  • Yang, Y. H., Dudoit, S., Luu, P. and Speed, T. P. (2001). Normalization for cDNA microarray data. In Microarrays: Optical Technologies and Informatics (M. L. Bittner, Y. Chen, A. N. Dorsel and E. R. Dougherty, eds.) 141--152. SPIE, Bellingham, WA.
  • Yekutieli, D. and Benjamini, Y. (1999). Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics. J. Statist. Plann. Inference 82 171--196.