Rocky Mountain Journal of Mathematics
- Rocky Mountain J. Math.
- Volume 49, Number 6 (2019), 1755-1767.
On the middle coefficient of $\Phi _{3p_2p_3}$
Abstract
The middle coefficient of a polynomial of an even degree $d$ is the coefficient of $x^{{d}/{2}}$. In this note we compute the middle coefficient of the cyclotomic polynomial $\Phi _{3p_2p_3}(x)$ when $p_3\equiv \pm 2,\pm 4, \pm 5\bmod 3p_2$.
Article information
Source
Rocky Mountain J. Math., Volume 49, Number 6 (2019), 1755-1767.
Dates
First available in Project Euclid: 3 November 2019
Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1572746416
Digital Object Identifier
doi:10.1216/RMJ-2019-49-6-1755
Mathematical Reviews number (MathSciNet)
MR4027231
Subjects
Primary: 11B83: Special sequences and polynomials
Secondary: 11C08: Polynomials [See also 13F20] 11N56: Rate of growth of arithmetic functions
Keywords
Cyclotomic polynomials middle coefficient
Citation
Al-Kateeb, Alaa. On the middle coefficient of $\Phi _{3p_2p_3}$. Rocky Mountain J. Math. 49 (2019), no. 6, 1755--1767. doi:10.1216/RMJ-2019-49-6-1755. https://projecteuclid.org/euclid.rmjm/1572746416