Abstract
Let $D \subseteq E$ be an extension of commutative rings with identity, $I$ a nonzero proper ideal of $D$, $(\Gamma , \leq )$ a strictly totally ordered monoid such that $0 \leq \alpha $ for all $\alpha \in \Gamma $, and $\Gamma ^*=\Gamma \setminus \{0\}$. Let $D+[\![E^{\Gamma ^*, \leq }]\!]=\{f \in [\![E^{\Gamma , \leq }]\!] \mid f(0) \in D\}$ and $D+[\![I^{\Gamma ^*, \leq }]\!] =\{f \in [\![D^{\Gamma , \leq }]\!] \mid f(\alpha ) \in I$ for all $\alpha \in \Gamma ^*\}$. In this paper, we give some conditions for the rings $D+[\![E^{\Gamma ^*, \leq }]\!]$ and $D+[\![I^{\Gamma ^*, \leq }]\!]$ to satisfy the ascending chain condition on principal ideals.
Citation
Jung Wook Lim. Dong Yeol Oh. "The ascending chain condition on principal ideals in composite generalized power series rings." Rocky Mountain J. Math. 49 (4) 1223 - 1236, 2019. https://doi.org/10.1216/RMJ-2019-49-4-1223
Information