Open Access
2019 The ascending chain condition on principal ideals in composite generalized power series rings
Jung Wook Lim, Dong Yeol Oh
Rocky Mountain J. Math. 49(4): 1223-1236 (2019). DOI: 10.1216/RMJ-2019-49-4-1223

Abstract

Let $D \subseteq E$ be an extension of commutative rings with identity, $I$ a nonzero proper ideal of $D$, $(\Gamma , \leq )$ a strictly totally ordered monoid such that $0 \leq \alpha $ for all $\alpha \in \Gamma $, and $\Gamma ^*=\Gamma \setminus \{0\}$. Let $D+[\![E^{\Gamma ^*, \leq }]\!]=\{f \in [\![E^{\Gamma , \leq }]\!] \mid f(0) \in D\}$ and $D+[\![I^{\Gamma ^*, \leq }]\!] =\{f \in [\![D^{\Gamma , \leq }]\!] \mid f(\alpha ) \in I$ for all $\alpha \in \Gamma ^*\}$. In this paper, we give some conditions for the rings $D+[\![E^{\Gamma ^*, \leq }]\!]$ and $D+[\![I^{\Gamma ^*, \leq }]\!]$ to satisfy the ascending chain condition on principal ideals.

Citation

Download Citation

Jung Wook Lim. Dong Yeol Oh. "The ascending chain condition on principal ideals in composite generalized power series rings." Rocky Mountain J. Math. 49 (4) 1223 - 1236, 2019. https://doi.org/10.1216/RMJ-2019-49-4-1223

Information

Published: 2019
First available in Project Euclid: 29 August 2019

zbMATH: 07104715
MathSciNet: MR3998919
Digital Object Identifier: 10.1216/RMJ-2019-49-4-1223

Subjects:
Primary: 13A02 , 13A15 , 13E99 , 13G05

Keywords: ascending chain condition on principal ideals , Generalized power series rings , ring extensions

Rights: Copyright © 2019 Rocky Mountain Mathematics Consortium

Vol.49 • No. 4 • 2019
Back to Top