Rocky Mountain Journal of Mathematics
- Rocky Mountain J. Math.
- Volume 48, Number 8 (2018), 2559-2571.
Invariant sets for QMF functions
Abstract
A quadrature mirror filter (QMF) function can be considered as the transition function for a Markov process on the unit interval. The QMF functions that generate scaling functions for multiresolution analyses are then distinguished by properties of their invariant sets. By characterizing these sets, we answer in the affirmative a question raised by Gundy.
Article information
Source
Rocky Mountain J. Math., Volume 48, Number 8 (2018), 2559-2571.
Dates
First available in Project Euclid: 30 December 2018
Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1546138821
Digital Object Identifier
doi:10.1216/RMJ-2018-48-8-2559
Mathematical Reviews number (MathSciNet)
MR3894993
Zentralblatt MATH identifier
06999274
Subjects
Primary: 37B10: Symbolic dynamics [See also 37Cxx, 37Dxx] 37C70: Attractors and repellers, topological structure 42C40: Wavelets and other special systems
Keywords
Scaling functions Markov processes invariant sets
Citation
Jonsson, Adam. Invariant sets for QMF functions. Rocky Mountain J. Math. 48 (2018), no. 8, 2559--2571. doi:10.1216/RMJ-2018-48-8-2559. https://projecteuclid.org/euclid.rmjm/1546138821