Rocky Mountain Journal of Mathematics

Nontrivial solutions for Kirchhoff-type problems involving the $p(x)$-Laplace operator

Abdeljabbar Ghanmi

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this article, we study the existence of nontrivial solutions for the following $p(x)$ Kirchhoff-type problem \begin{equation} \begin{cases}\smash {\!-M\big (\textstyle \int _{\Omega }A(x,\nabla u)\,dx\big ){div}(a(x,\nabla u))} =\lambda h(x)\frac{\partial F}{\partial u} (x,u), \quad \mbox {in } \Omega \\ u=0, \quad \mbox {on } \partial \Omega , \end{cases} \end{equation} where $\Omega \subset \mathbb {R}^{n}$, $n\geq 3$, is a smooth bounded domain, $\lambda >0$, $h\in C(\Omega )$, $F:\overline {\Omega }\times \mathbb {R}\rightarrow \mathbb {R}$ is continuously differentiable and $a, A:\Omega \times \mathbb {R}^{n}\rightarrow \mathbb {R}^{n}$ are continuous. The proof is based on variational arguments and the theory of variable exponent Sobolev spaces.

Article information

Source
Rocky Mountain J. Math., Volume 48, Number 4 (2018), 1145-1158.

Dates
First available in Project Euclid: 30 September 2018

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1538272826

Digital Object Identifier
doi:10.1216/RMJ-2018-48-4-1145

Mathematical Reviews number (MathSciNet)
MR3859751

Zentralblatt MATH identifier
06958772

Subjects
Primary: 35J35: Variational methods for higher-order elliptic equations 35J50: Variational methods for elliptic systems 35J60: Nonlinear elliptic equations

Keywords
Nontrivial solution Kirchhoff-type problems variational method

Citation

Ghanmi, Abdeljabbar. Nontrivial solutions for Kirchhoff-type problems involving the $p(x)$-Laplace operator. Rocky Mountain J. Math. 48 (2018), no. 4, 1145--1158. doi:10.1216/RMJ-2018-48-4-1145. https://projecteuclid.org/euclid.rmjm/1538272826


Export citation

References

  • S.N. Antontsev and S.I. Shmarev, A model porous medium equation with variable exponent of nonlinearity: Existence, uniqueness and localization properties of solutions, Nonlin. Anal. 60 (2005), 515–545.
  • G. Autuori and P. Pucci, Kirchhoff systems with nonlinear source and boundary damping terms, Comm. Pure Appl. Anal. 9 (2010), 1161–1188.
  • M. Avci, Existence of weak solutions for a nonlocal problem involving the $p(x)$-Laplace operator, Univ. J. Appl. Math. 1 (2013), 192–197.
  • K. Ben Ali, A. Ghanmi and K. Kefi, On the Steklov problem involving the $p(x)$-Laplacian with indefinite weight, Opuscula Math. 37 (2017), to appear.
  • M.M. Cavalcante, V.N. Cavalcante and J.A. Soriano, Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation, Adv. Diff. Eqs. 6 (2001), 701–730.
  • C.Y. Chen, Y.C. Kuo and T.F. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Diff. Eqs. 250 (2011), 1876–1908.
  • B. Cheng, New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff-type problems, J. Math. Anal. Appl. 394 (2012), 488–495.
  • N.T. Chung, Multiplicity results for a class of $p(x)$-Kirchhoff-type equations with combined nonlinearities, Electr. J. Qual. Th. Diff. Eqs. 42 (2012), 1–13.
  • G. Dai and D. Liu, Infinitely many positive solutions for a $p(x)$-Kirchhoff-type equation, J. Math. Anal. Appl. 359 (2009), 704–710.
  • D. Edmunds and J. Rakosnik, Sobolev embeddings with variable exponent, Stud. Math. 143 (2000), 267–293.
  • I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353.
  • X.L. Fan, J.S. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$, J. Math. Anal. Appl. 262 (2001), 749–760.
  • X.L. Fan and Q.H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problems, Nonlin. Anal. 52 (2003), 1843–1852.
  • A. Ghanmi and K. Saoudi, A multiplicity results for a singular equation involving the $p(x)$-Laplace operator, Compl. Var. Ellipt. Eqs. 62 (2016), 695–725.
  • T.C. Halsey, Electrorheological fluids, Science 258 (1992), 761–766.
  • G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
  • O. Kovǎčik and J. Rǎkosnik, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslov. Math. J. 41 (1991), 592–618.
  • D. Liu, On a $p$-Kirchhoff equation via fountain theorem and dual fountain theorem, Nonlin. Anal. 72 (2010), 302–308.
  • R.A. Mashiyev, S. Ogras, Z. Yucedag and M. Avci, Existence and multiplicity of weak solutions for nonuniformly elliptic equations with nonstandard growth condition, Compl. Var. Ellipt. Eqs. 57 (2012), 579–595.
  • M. Mihǎilescu and V. Rǎdulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc. 135 (2007), 2929–2937.
  • B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters, J. Global Optim. 46 (2010), 543–549.
  • J.J. Sun and C.L. Tang, Existence and multiplicity of solutions for Kirchhoff type equations, Nonlin. Anal. 74 (2011), 1212–1222.
  • Z. Yucedag, Existence of weak solutions for $p(x)$-Kirchhoff-type equation, Int. J. Pure Appl. Math. 92 (2014), 61–71.
  • V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR 9 (1987), 33–66.