Rocky Mountain Journal of Mathematics

On a sine polynomial of Turán

Horst Alzer and Man Kam Kwong

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In 1935, Tur\'an proved that \[ S_{n,a}(x)= \sum _{j=1}^n{n+a-j\choose n-j} \sin (jx)>0, \] \[n,a\in \mathbf {N},\quad 0\lt x\lt \pi .\] We present various related inequalities. Among others, we show that the refinements $$ S_{2n-1,a}(x)\geq \sin (x) \quad \mbox {and} \quad {S_{2n,a}(x)\geq 2\sin (x)(1+\cos (x))} $$ are valid for all integers $n\geq 1$ and real numbers $a\geq 1$ and $x\in (0,\pi )$. Moreover, we apply our theorems on sine sums to obtain inequalities for Chebyshev polynomials of the second kind.

Article information

Source
Rocky Mountain J. Math., Volume 48, Number 1 (2018), 1-18.

Dates
First available in Project Euclid: 28 April 2018

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1524880878

Digital Object Identifier
doi:10.1216/RMJ-2018-48-1-1

Mathematical Reviews number (MathSciNet)
MR3795730

Zentralblatt MATH identifier
06866697

Subjects
Primary: 26D05: Inequalities for trigonometric functions and polynomials 26D15: Inequalities for sums, series and integrals 33C45: Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) [See also 42C05 for general orthogonal polynomials and functions]

Keywords
Trigonometric sums inequalities Chebyshev poly­no­mi­als

Citation

Alzer, Horst; Kwong, Man Kam. On a sine polynomial of Turán. Rocky Mountain J. Math. 48 (2018), no. 1, 1--18. doi:10.1216/RMJ-2018-48-1-1. https://projecteuclid.org/euclid.rmjm/1524880878


Export citation

References

  • H. Alzer and B. Fuglede, On a trigonometric inequality of Turán, J. Approx. Th. 164 (2012), 1496–1500.
  • H. Alzer and S. Koumandos, On the partial sums of a Fourier series, Constr. Approx. 27 (2008), 253–268.
  • H. Alzer and M.K. Kwong, Extension of a trigonometric inequality of Turán, Acta Sci. Math. 80 (2014), 21–26.
  • H.S. Carslaw, A trigonometrical sum and Gibbs phenomenon in Fourier's series, Amer. J. Math. 39 (1917), 185–198.
  • L. Fejér, Einige Sätze, die sich auf das Vorzeichen einer ganzen rationalen Funktion beziehen;..., Monatsh. Math. Phys. 35 (1928), 305–344.
  • T.H. Gronwall, Über die Gibbssche Erscheinung und die trigonometrischen Summen $\sin x +\frac{1}{2} \sin 2x +\cdots +\frac{1}{n} \sin nx$, Math. Ann. 72 (1912), 228–243.
  • D. Jackson, Über eine trigonometrische Summe, Rend. Circ. Mat. Palermo 32 (1911), 257–262.
  • J.C. Mason and D.C. Handscomb, Chebyshev polynomials, Chapman and Hall, Boca Raton, 2002.
  • G.V. Milovanović, D.S. Mitrinović and Th.M. Rassias, Topics in polynomials: Extremal problems, inequalities, zeros, World Scientific, Singapore, 1994.
  • J. Steinig, A criterion for the positivity of sine polynomials, Proc. Amer. Math. Soc. 38 (1973), 583–586.
  • G. Szegő, Power series with multiply sequences of coefficients, Duke Math. J. 8 (1941), 559–564.
  • P. Turán, Über die arithmetischen Mittel der Fourierreihe, J. Lond. Math. Soc. 10 (1935), 277–280.
  • ––––, Über die Partialsummen der Fourierreihe, J. Lond. Math. Soc. 13 (1938), 278–282.