Rocky Mountain Journal of Mathematics

On the coefficients of triple product $L$-functions

Guangshi Lü and Ayyadurai Sankaranarayanan

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


In this paper, we investigate the average behavior of coefficients of the triple product $L$-function $L(f \otimes f \otimes f,s)$ attached to a primitive holomorphic cusp form $f(z)$ of weight~$k$ for the full modular group $SL(2, \Z )$. Here we call $f(z)$ a primitive cusp form if it is an eigenfunction of all Hecke operators simultaneously.

Article information

Rocky Mountain J. Math., Volume 47, Number 2 (2017), 553-570.

First available in Project Euclid: 18 April 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11F30: Fourier coefficients of automorphic forms 11F66: Langlands $L$-functions; one variable Dirichlet series and functional equations

Fourier coefficients of automorphic forms Dirichlet series triple product $L$-function Perron's formula


Lü, Guangshi; Sankaranarayanan, Ayyadurai. On the coefficients of triple product $L$-functions. Rocky Mountain J. Math. 47 (2017), no. 2, 553--570. doi:10.1216/RMJ-2017-47-2-553.

Export citation


  • T. Barnet-Lamb, D. Geraghty, M. Harris and R. Taylor, A family of Calabi-Yau varieties and potential automorphy, II, Publ. Res. Inst. Math. Sci. 47 (2011), 29–98.
  • V. Blomer, On the $4$-norm of an automorphic form, J. European Math. Soc. 15 (2013), 1825–1852.
  • H. Davenport, On certain exponential sums, J. reine angew. Math. 169 (1932), 158–176.
  • P. Deligne, La conjecture de Weil, I, II, Publ. Math. IHES 48 (1974), 273–308; ibid 52 (1981), 313–428.
  • O.M. Fomenko, Fourier coefficients of parabolic forms, and automorphic $L$-functions, J. Math. Sci. 95 (1999), 2295–2316.
  • J.B. Friedlander and H. Iwaniec, Summation formulae for coefficients of $L$-functions, Canad. J. Math. 57 (2005), 494–505.
  • S. Gelbart and H. Jacquet, A relation between automorphic representations of ${\GL}(2)$ and ${\GL}(3)$, Ann. Sci. Ecole Norm. 11 (1978), 471–542.
  • A. Good, The square mean of Dirichlet series associated with cusp forms, Mathematika 29 (1982), 278–295.
  • J.L. Hafner and A. Ivić, On sums of Fourier coefficients of cusp forms, Enseign. Math. 35 (1989), 375–382.
  • E. Hecke, Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abh. Math. Sem. Univ. Hamburg 5 (1927), 199–224.
  • A. Ivić, Exponent pairs and the zeta function of Riemann, Stud. Sci. Math. Hungar. 15 (1980), 157–181.
  • ––––, On zeta-functions associated with Fourier coefficients of cusp forms, in Proc. Amalfi Conf. Anal. Number Theory, University of Salerno, Salerno, 1992.
  • H. Iwaniec and E. Kowalski, Analytic number theory, Amer. Math. Soc. Colloq. Publ. 53, American Mathematical Society, Providence, 2004.
  • H. Jacquet and J.A. Shalika, On Euler products and the classification of automorphic representations I, Amer. J. Math. 103 (1981), 499–558.
  • ––––, On Euler products and the classification of automorphic forms, II, Amer. J. Math. 103 (1981), 777–815.
  • H. Kim, Functoriality for the exterior square of $GL_4$ and symmetric fourth of $GL_2$, J. Amer. Math. Soc. 16 (2003), 139–183.
  • H.H. Kim and F. Shahidi, Functorial products for ${\rm GL}\sb 2\times{\rm GL}\sb 3$ and the symmetric cube for ${\rm GL}\sb 2$, Ann. Math. 155 (2002), 837–893.
  • ––––, Cuspidality of symmetric powers with applications, Duke Math. J. 112 (2002), 177–197.
  • H.D. Kloosterman, Asymptotische Formeln für die Fourier-koeffizienten ganzer Modulformen, Abh. Math. Sem. Univ. Hamburg 5 (1927), 337–352.
  • Y.-K. Lau and G.-S. Lü, Sums of Fourier coefficients of cusp forms, Quart. J. Math. 62 (2011), 687C-716.
  • Y.-K. Lau, G.-S. Lü and J. Wu, Integral power sums of Hecke eigenvalues, Acta Arith. 150 (2011), 193C-207.
  • X. Li, Bounds for $GL(3)\times GL(2)$ $L$-functions and $GL(3)$ $L$-functions, Ann. Math. 173 (2011), 301–336.
  • G.-S. Lü, Average behavior of Fourier coefficients of cusp forms, Proc. Amer. Math. Soc. 137 (2009), 1961–1969.
  • ––––, The sixth and eighth moments of Fourier coefficients of cusp forms, J. Number Th. 129 (2009), 2790–2800.
  • G.-S. Lü, On higher moments of Fourier coefficients of Holomorphic cusp forms, Canadian J. Math. 63 (2011), 634–647.
  • B. Mazur, Finding meaning in eroor terms, Bull. Amer. Math. Soc. 45 (2008), 185–228.
  • C.J. Moreno and F. Shahidi, The fourth moment of Ramanujan $\tau$-function, Math. Ann. 266 (1983), 233–239.
  • R.W.K. Odoni, Solution of a generalised version of a problem of Rankin on sums of powers of cusp-form coefficients, Acta Arith. 104 (2002), 201–223.
  • A. Perelli, General $L$-functions, Ann. Mat. Pura Appl. 130 (1982), 287–306.
  • R.A. Rankin, Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions, I, The zeros of the function $\sum^\infty_{n=1}\tau(n)/n^s$ on the line $\re s=13/2$, II, The order of the Fourier coefficients of integral modular forms, Proc. Cambr. Philos. Soc. 35 (1939), 351–372.
  • ––––, Sums of cusp form coefficients, in Automorphic forms and analytic number theory, University of Montreal, Montreal, 1990.
  • H. Salié, Zur Abschatzung der Fourierkoeffizienten ganzer Modulformen, Math. Z. 36 (1933), 263–278.
  • A. Selberg, Bemerkungen ber eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Natur. 43 (1940), 47–50.
  • F. Shahidi, On certain $L$-functions, Amer. J. Math. 103 (1981), 297–355.
  • ––––, Fourier transforms of intertwining operators and Plancherel measures for $\text{\rm GL}(n)$, Amer. J. Math. 106 (1984), 67–111.
  • ––––, Local coefficients as Artin factors for real groups, Duke Math. J. 52 (1985), 973–1007.
  • ––––, A proof of Langlands' conjecture on Plancherel measures: Complementary series for $p$-adic groups, Ann. Math. 132 (1990), 273–330.
  • G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambr. Stud. Adv. Math. 46, Cambridge University Press, Cambridge, 1995.
  • A. Walfisz, Über die Koeffizientensummen einiger Moduformen, Math. Ann. 108 (1933), 75–90.
  • J.R. Wilton, A note on Ramanujan's arithmetical function $\tau(n)$, Proc. Cambr. Philos. Soc. 25 (1928), 121–129.
  • A. Weil, On some exponential sums, Proc. Acad. Sci. 34 (1948), 204–207.
  • J. Wu, Power sums of Hecke eigenvalues and application, Acta Arith. 137 (2009), 333–344.