Abstract
Let $E$ be an elliptic curve defined over $\mathbb{Q} $. We study the relationship between the torsion subgroup $E(mathbb{Q} )_{tors}$ and the torsion subgroup $E(K)_{tors}$, where $K$ is a cubic number field. In particular, we study the number of cubic number fields $K$ such that $E(\mathbb{Q} )_{tors}\neq E(K)_{tors}$.
Citation
Enrique González-Jiménez. Filip Najman. José M. Tornero. "Torsion of rational elliptic curves over cubic fields." Rocky Mountain J. Math. 46 (6) 1899 - 1917, 2016. https://doi.org/10.1216/RMJ-2016-46-6-1899
Information