Rocky Mountain Journal of Mathematics

The symbolic generic initial system of almost linear point configurations in $\mathbb P^2$

Sarah Mayes

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Consider an ideal $I \subseteq K[x,y,z]$ corresponding to a point configuration in $\mathbb {P}^2$ where all but one of the points lies on a single line. In this paper, we study the symbolic generic initial system $\{\rm{gin\,}(I^{(m)})\}_m$ obtained by taking the reverse lexicographic generic initial ideals of the uniform fat point ideals $I^{(m)}$. We describe the limiting shape of $\{\rm{gin\,}(I^{(m)})\}_m$ and, in proving this result, demonstrate that infinitely many of the ideals $I^{(m)}$ are componentwise linear.

Article information

Rocky Mountain J. Math., Volume 46, Number 1 (2016), 283-299.

First available in Project Euclid: 23 May 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 13P10: Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases)
Secondary: 13C40: Linkage, complete intersections and determinantal ideals [See also 14M06, 14M10, 14M12]

Generic initial ideals fat points symbolic powers asymp­totic behavior


Mayes, Sarah. The symbolic generic initial system of almost linear point configurations in $\mathbb P^2$. Rocky Mountain J. Math. 46 (2016), no. 1, 283--299. doi:10.1216/RMJ-2016-46-1-283.

Export citation


  • A. Aramova, J. Herzog and T. Hibi, Ideals with stable Betti numbers, Adv. Math. 152 (2000), 72-–77.
  • S. Cooper, B. Harbourne and Z. Teitler, Combinatorial bounds on Hilbert functions of fat points in projective space, J. Pure Appl. Alg. 215 (2011), 2165-–2179.
  • S. Cooper and S. Hartke, The alpha problem and line count configurations, arXiv:1312.4147 [math.AC].
  • A. Denkert and M. Janssen, Containment problem for points on a reducible conic in $\mathbb{P}^2$, arXiv:1207.7153v2.
  • C.A. Francisco, Resolutions of small sets of fat points, J. Pure Appl. Alg. 203 (2005), 220-–236.
  • A. Geramita, Lectures on the non-singular cubic surface in $\mathbb{P}^3$, Queen's Papers Pure Appl Math. 83, Queen's University, Kingston, 1989.
  • E. Guardo and B. Harbourne, Resolutions of ideals of any six fat points in $\mathbb{P}^2$, J Alg. 318 (2007), 619–-640.
  • ––––, Free resolutions of fat point ideals on $\mathbb{P}^2$, J. Pure Appl. Alg. 125 (1998), 213-–234.
  • ––––, Problems and progress: A survey on fat points in $\mathbb{P}^2$, Queen's Papers Pure Appl. Math. 123, Queen's University, Kingston, 2002, 85-–132.
  • J. Herzog and T. Hibi, Componentwise linear ideals, Nagoya Math J. 153 (1999), 141-–153.
  • H. Markwig, Free resolutions of fat points on a conic in $\mathbb{P}^2$,
  • S. Mayes, The asymptotics of symbolic generic initial systems of six points in $\mathbb{P}^2$, arXiv:1202:1317 [math.AC], J. Commutative Algebra, to appear.
  • S. Mayes, The symbolic generic initial system of points on an irreducible conic, arXiv:1304.7542.
  • ––––, The asymptotic behaviour of symbolic generic initial systems of generic points, J. Pure Appl. Alg. 218 (2014), 381-–390.
  • I. Peeva, Graded syzygies, Alg. Appl. 14, Springer, London, 2011.