Rocky Mountain Journal of Mathematics

Slit univalent harmonic mappings

Armen Grigoryan

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this paper we consider the class of complex-valued harmonic univalent functions that map the unit disc onto the complex plane, half-plane or a strip slit along finitely many horizontal half-lines.

Article information

Source
Rocky Mountain J. Math., Volume 46, Number 1 (2016), 169-187.

Dates
First available in Project Euclid: 23 May 2016

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1464035858

Digital Object Identifier
doi:10.1216/RMJ-2016-46-1-169

Mathematical Reviews number (MathSciNet)
MR3506084

Zentralblatt MATH identifier
06587826

Subjects
Primary: 30C45: Special classes of univalent and multivalent functions (starlike, convex, bounded rotation, etc.)

Keywords
Univalent harmonic mappings boundary behavior of harmonic mappings

Citation

Grigoryan, Armen. Slit univalent harmonic mappings. Rocky Mountain J. Math. 46 (2016), no. 1, 169--187. doi:10.1216/RMJ-2016-46-1-169. https://projecteuclid.org/euclid.rmjm/1464035858


Export citation

References

  • L.V. Ahlfors, Complex Analysis, Third edition, McGraw-Hill, Inc., New York, 1979.
  • J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. 9 (1984), 3–25.
  • M. Dorff, M. Nowak and M. Wołoszkiewicz, Harmonic mappings onto parallel slit domains, Ann. Polon. Math. 101.2 (2011), 149–162.
  • T.A. Driscoll and L.N. Trefethen, Schwarz-Christoffel Mapping, Cambridge Mono. App. Comp. Math., Cambridge University Press, Cambridge, 2002.
  • P. Duren, Harmonic Mappings in the Plane, Cambridge University Press, Cambridge, 2004.
  • ––––, Univalent Functions, Springer-Verlag, New York, 1983.
  • A. Ganczar and J. Widomski, Univalent harmonic mappings into two-slit domains, J. Austral. Math. Soc. 88 (2010), 61–73.
  • A. Grigoryan and W. Szapiel, Two-slit harmonic mappings, Ann. Univ. Mariae Curie-Skłod. 49 (1995), 59–84.
  • ––––, An existence theorem for harmonic homeomorphisms with a given range and some convergence theorems, Complex Variab. Ellipt. Equat. 52 (2007), 341–350.
  • W. Hengartner and G. Schober, Univalent harmonic mappings, Trans. Amer. Math. Soc. 299 (1987), 1–31.
  • H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689–692.
  • A.E. Livingston, Univalent harmonic mappings, Ann. Polon. Math. 57 (1992), 57–70.
  • ––––, Univalent harmonic mappings II, Ann. Polon. Math. 67 (1997), 131–145.
  • Ch. Pommerenke, Boundary behaviour of comformal maps, Springer-Verlag, New York, 1992.