Rocky Mountain Journal of Mathematics

A dynamical system for a nonlocal parabolic equation with exponential nonlinearity

Tosiya Miyasita

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We consider a nonlocal parabolic and the corresponding elliptic equation with exponential nonlinearity. At first, we study the set of a stationary solution and compute its Morse index. Next, we obtain the time-global solution in the use of the Lyapunov function and define the dynamical system. Finally, we construct an exponential attractor by a squeezing property.

Article information

Rocky Mountain J. Math., Volume 45, Number 6 (2015), 1897-1917.

First available in Project Euclid: 14 March 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 35K55: Nonlinear parabolic equations
Secondary: 35J60: Nonlinear elliptic equations 37L25: Inertial manifolds and other invariant attracting sets

Nonlocal Morse index Lyapunov function exponential attractor squeezing property


Miyasita, Tosiya. A dynamical system for a nonlocal parabolic equation with exponential nonlinearity. Rocky Mountain J. Math. 45 (2015), no. 6, 1897--1917. doi:10.1216/RMJ-2015-45-6-1897.

Export citation


  • S.B. Angenent, The Morse-Smale property for a semi-linear parabolic equation, J. Diff. Equat. 62 (1986), 427–442.
  • ––––, The zeroset of a solution of a parabolic equation, J. reine angew. Math. 390 (1988), 79–96.
  • H. Brezis, Analyse fonctionnelle, Dunod, 1999.
  • H. Brezis and F. Merle, Uniform estimates and blow-up behavior for solutions of $-\Delta u = V(x) e^u$ in two dimensions, Comm. Partial Diff. Equat. 16 (1991), 1223–1253.
  • E. Caglioti, P.L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Comm. Math. Phys. 143 (1992), 501–525.
  • ––––, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, II, Comm. Math. Phys. 174 (1995), 229–260.
  • C.-C. Chen and C.-S. Lin, On the symmetry of blowup solutions to a mean field equation, Ann. Inst. H. Poincaré Anal. Non Lin. 18 (2001), 271–296.
  • M.G. Crandall and P.H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971), 321–340.
  • A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential attractors for dissipative evolution equations, John-Wiley and Sons, New-York, 1994.
  • M. Fila and H. Matano, Connecting equilibria by blow-up solutions, Discr. Contin. Dynam. Syst. 6 (2000), 155–164.
  • M. Fila, H. Matano and P. Poláčik, Existence of $L^1$-connections between equilibria of a semilinear parabolic equation, J. Dyn. Diff. Equat. 14 (2002), 463–491.
  • M. Fila and P. Poláčik, Global solutions of a semilinear parabolic equation, Adv. Diff. Equat. 4 (1999), 163–196.
  • I.M. Gel'fand, Some problems in the theory of quasilinear equations, Amer. Math. Soc. Trans. 29 (1963), 295–381.
  • B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximal priciple, Comm. Math. Phys. 68 (1979), 209–243.
  • J.K. Hale, Asymptotic behavior of dissipative systems, Math. Surv. Mono. 25, American Mathematical Society, Providence, RI, 1988.
  • D. Henry, Geometric theory of semilinear parabolic equations, Lect. Notes Math. 840, Springer-Verlag, New York, 1981.
  • D.D. Joseph and T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rat. Mech. Anal. 49 (1972/73), 241–269.
  • T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York, 1966.
  • M.K.H. Kiessling, Statistical mechanics of classical particles with logarithmic interaction, Comm. Pure Appl. Math. 46 (1993), 229–260.
  • Y.Y. Li, Harnack type inequality: The method of moving planes, Comm. Math. Phys. 200 (1999), 421–444.
  • Y.Y. Li and I. Shafrir, Blow-up analysis for solutions of $-\Delta u = V e^u$ in dimension two, Indiana Univ. Math. Journal 43 (1994), 1255–1270.
  • C.-S. Lin, Topological degree for the mean field equation on $S^2$, Duke Math. Journal 104 (2000), 501–536.
  • H. Matano, Nonincrease of the lap-number of a solution for a one-dimensinal semilinear parabolic equation, J. Fac. Sci. Univ. Tokyo Math. 29 (1982), 401–441.
  • T. Miyasita, Non-local elliptic problem in higher dimension, Osaka J. Math. 44 (2007), 159–172.
  • ––––, On the dynamical system of a parabolic equation with non-local term, Adv. Stud. Pure Math. 47, Math. Soc. Japan, Tokyo, 2007.
  • T. Miyasita and T. Suzuki, Non-local Gel'fand problem in higher dimensions, Banach Center Publ. 66, Polish Acad. Sci., Warsaw, 2004.
  • J. Moser, A sharp form of an inequality by N.Trudinger, Indiana Univ. Math. Journal 20 (1970/71), 1077–1091.
  • M. Nolasco and G. Tarantello, On a sharp Sobolev-type inequality on two-dimensional compact manifolds, Arch. Rat. Mech. Anal. 145 (1998), 161–195.
  • K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlin. Anal. 51 (2002), 119–144.
  • T. Ricciardi and G. Tarantello, On a periodic boundary value problem with exponential nonlinearities, Diff. Int. Equat. 11 (1998), 745–753.
  • J. Spruck and Y. Yang, Topological solutions in the self-dual Chern-Simons gauge theory: existence and approximation, Ann. Inst. H. Poin. Anal. Non Lin. 12 (1995), 75–97.
  • M. Struwe and G. Tarantello, On multivortex solutions in Chern-Simons gauge theory, Boll. Un. Mat. Ital. Mat. 1 (1998), 109–121.
  • T. Suzuki, Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity, Ann. Inst. Poin. Anal. Non Lin. 9 (1992), 367–398.
  • G. Tarantello, Multiple condensate solutions for the Chern-Simons-Higgs theory, J. Math. Phys. 37 (1996), 3769–3796.
  • R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci. 68, Springer-Verlag, New York, 1997.
  • S. Zheng, Nonlinear parabolic equations and hyperbolic-parabolic coupled systems, Pitman Mono. Surv. Pure Appl. Math. 76, John Wiley & Sons, Inc., New York, 1995.