Rocky Mountain Journal of Mathematics

Note on Igusa's cusp form of weight 35

Toshiyuki Kikuta, Hirotaka Kodama, and Shoyu Nagaoka

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


A congruence relation satisfied by Igusa's cusp form of weight~35 is presented. As a tool to confirm the congruence relation, a Sturm-type theorem for the case of odd-weight Siegel modular forms of degree~2 is included.

Article information

Rocky Mountain J. Math., Volume 45, Number 3 (2015), 963-972.

First available in Project Euclid: 21 August 2015

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11F33: Congruences for modular and $p$-adic modular forms [See also 14G20, 22E50]
Secondary: 11F46: Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms


Kikuta, Toshiyuki; Kodama, Hirotaka; Nagaoka, Shoyu. Note on Igusa's cusp form of weight 35. Rocky Mountain J. Math. 45 (2015), no. 3, 963--972. doi:10.1216/RMJ-2015-45-3-963.

Export citation


  • H. Aoki and T. Ibukiyama, Simple graded rings of Siegel modular forms, differential operators and Borcherds products, Int. J. Math. 16 (2005), 249–279.
  • S. Böcherer, Über gewisse Siegelsche Modulformen zweiten Grades, Math. Ann. 261 (1982), 23-41.
  • S. Böcherer and S. Nagaoka, On mod $p$ properties of Siegel modular forms, Math. Ann. 338 (2007), 421–433.
  • D. Choi, Y. Choie and T. Kikuta, Sturm type theorem for Siegel modular forms of genus $2$ modulo $p$, Acta Arith. 158 (2013), 129–139.
  • J.-I. Igusa, On Siegel modular forms of genus two, Amer. J. Math. 84 (1962), 175–200; II, ibid. 86 (1964), 392–412.
  • ––––, On the ring of modular forms of degree two over $\boldsymbol{Z}$, Amer. J. Math. 101 (1979), 149–183.
  • C. Poor and D.S. Yuen, Paramodular cusp forms, arXiv:0912.0049v1 [math.NT], 1 Dec 2009.
  • J.-P. Serre, Formes modulaires et fonctions zêta $p$-adiques, Modular functions of one variable III, Lect. Notes Math. 350 (1972), 191–268.