Rocky Mountain Journal of Mathematics

Zero-divisor graphs of modules via module homomorphisms

M. Afkhami, E. Estaji, K. Khashyarmanesh, and M.R. Khorsandi

Full-text: Open access

Abstract

In this paper, using module endomorphisms, we extend the concept of the zero-divisor graph of a ring to a module over an arbitrary commutative ring. The main aim of this article is studying the interplay of module-theoretic properties of a module with graph properties of its zero-divisor graph.

Article information

Source
Rocky Mountain J. Math., Volume 45, Number 1 (2015), 1-11.

Dates
First available in Project Euclid: 7 April 2015

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1428412771

Digital Object Identifier
doi:10.1216/RMJ-2015-45-1-1

Mathematical Reviews number (MathSciNet)
MR3334202

Zentralblatt MATH identifier
1310.05114

Subjects
Primary: 05C25: Graphs and abstract algebra (groups, rings, fields, etc.) [See also 20F65]
Secondary: 05C10: Planar graphs; geometric and topological aspects of graph theory [See also 57M15, 57M25] 13C05: Structure, classification theorems

Keywords
Zero-divisor graph endomorphism of a module girth decomposable module planar graph tensor product of graphs

Citation

Afkhami, M.; Estaji, E.; Khashyarmanesh, K.; Khorsandi, M.R. Zero-divisor graphs of modules via module homomorphisms. Rocky Mountain J. Math. 45 (2015), no. 1, 1--11. doi:10.1216/RMJ-2015-45-1-1. https://projecteuclid.org/euclid.rmjm/1428412771


Export citation

References

  • S. Akbari, H.R. Maimani and S. Yassemi, When a zero-divisor graph is planar or a complete $r$-partite graph, J. Alg. 270 (2003), 169–180.
  • D.D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Alg. 159 (1993), 500–514.
  • D.F. Anderson, A. Frazier, A. Lauve and P.S. Livingston, The zero-divisor graph of a commutative ring, II, Lect. Notes Pure Appl. Math. 220, Dekker, New York, 2001.
  • D.F. Anderson, R. Levy and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Alg. 180 (2003), 221–241.
  • D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Alg. 217 (1999), 434–447.
  • I. Beck, Coloring of commutative rings, J. Alg. 116 (1988), 208–226.
  • M. Behboodi, Zero divisor graphs of modules over a commutative rings, J. Comm. Alg. 4 (2012), 175–197.
  • A.J. Berrick and M.E. Keating, An introduction to ring and modules with $K$-theory in view, Cambridge University Press, Cambridge, 2000.
  • F.R. DeMeyer, T. McKenzie and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum 65 (2002), 206–214.
  • F.R. DeMeyer and K. Schneider, Automorphisms and zero-divisor graphs of commutative rings, Comm. Rings 2537, Nova Science Publishers, Hauppauge, NY, 2002.
  • R. Diestel, Graph theory, Grad. Texts Math. 173, Springer-Verlag, Heidelberg, 2005.
  • N. Jacobson, Basic algebra II: Second edition, Dover Publications, New York, 2009.
  • H. Matsumura, Commutative ring theory, Cambridge University Press, Cambridge, 1986.
  • S.B. Mulay, Cycles and symmetries of zero-divisors, Comm. Alg. 30 (2002), 3533–3558.
  • S.P. Redmond, Generalizations of the zero divisor graph of a ring, Ph.D. thesis, The University of Tennessee, Knoxville, 2001.