Rocky Mountain Journal of Mathematics

Sub- and super-additive properties of the psi function

Horst Alzer

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We prove the following sub- and super-additive properties of the psi function. \begin{enumerate} \item[(i)] The inequality \[ \psi\bigl( (x+y)^{\alpha} \bigr) \leq \psi(x^{\alpha})+\psi(y^{\alpha}) \quad{(\alpha \in\mathbf{R})} \] holds for all $x,y>0$ if and only if $\alpha\leq \alpha_0=-1.0266\ldots$\,. Here, $\alpha_0$ is given by \[ 2^{\alpha_0}=\inf_{t>0} \frac{\psi^{-1}\bigl( 2\psi(t) \bigr)}{t}=0.4908\ldots\, . \] \item[(ii)] The inequality \[ \psi(x^{\beta})+\psi(y^{\beta}) \leq \psi\bigl( (x+y)^{\beta} \bigr) \quad(\beta \in\mathbf{R}) \] is valid for all $x,y>0$ if and only if $\beta=0$. \end{enumerate}

Article information

Source
Rocky Mountain J. Math., Volume 44, Number 5 (2014), 1399-1414.

Dates
First available in Project Euclid: 1 January 2015

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1420071547

Digital Object Identifier
doi:10.1216/RMJ-2014-44-5-1399

Mathematical Reviews number (MathSciNet)
MR3295635

Zentralblatt MATH identifier
1308.33001

Subjects
Primary: 33B15: Gamma, beta and polygamma functions 39B62: Functional inequalities, including subadditivity, convexity, etc. [See also 26A51, 26B25, 26Dxx]

Keywords
Psi function sub-additive super-additive inequalities convex concave

Citation

Alzer, Horst. Sub- and super-additive properties of the psi function. Rocky Mountain J. Math. 44 (2014), no. 5, 1399--1414. doi:10.1216/RMJ-2014-44-5-1399. https://projecteuclid.org/euclid.rmjm/1420071547


Export citation

References

  • M. Abramowitz and I.A. Stegun, eds., Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover, New York, 1965.
  • H. Alzer, A power mean inequality for the gamma function, Monatsh. Math. 131 (2000), 179–188.
  • ––––, Mean-value inequalities for the polygamma functions, Aequat. Math. 61 (2001), 151–161.
  • ––––, Sharp inequalities for the digamma and polygamma functions, Forum. Math. 16 (2004), 181–221.
  • ––––, Sub- and superadditive properties of Euler's gamma function, Proc. Amer. Math. Soc. 135 (2007), 3641–3648.
  • H. Alzer and S. Ruscheweyh, A subadditive property of the gamma function, J. Math. Anal. Appl. 285 (2003), 564–577.
  • E.F. Beckenbach, Superadditivity inequalities, Pac. J. Math. 14 (1964), 421–438.
  • E.F. Beckenbach and R. Bellman, Inequalities, Springer, Berlin, 1983.
  • P.R. Beesack, On weighted means of order $r$, Univ. Beograd. Publ. Elektr. Fak. Mat. Fiz. 381409 (1972), 21–24.
  • A. Bruckner, Minimal superadditive extensions of superadditive functions, Pac. J. Math. 10 (1960), 1155–1162.
  • ––––, Tests for the superadditivity of functions, Proc. Amer. Math. Soc. 13 (1962), 126–130.
  • ––––, Some relations between locally superadditive functions and convex functions, Proc. Amer. Math. Soc. 15 (1964), 61–65.
  • Y. Chu, X. Zhang and X. Tang, An elementary inequality for psi function, Bull. Inst. Math. Acad. Sinica (N.S.) 3 (2008), 373–380.
  • Y. Chu, X. Zhang and Z. Zhang, The geometric convexity of a function involving gamma function with applications, Comm. Korean Math. Soc. 25 (2010), 373–383.
  • G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1952.
  • E. Hille and R.S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ. 31, Providence, RI, 1957.
  • M. Kuczma, An introduction to the theory of functional equations and inequalities, Birkhäuser, Basel, 2009.
  • Y.-P. Lv, T.-C. Sun and Y.-M. Chu, Necessary and sufficient conditions for a class of functions and their reciprocals to be logarithmically completely monotonic, J. Inequal. Appl. 2011, 2011:36, 8 pages.
  • J. Matkowski and T. Swiatkowski, On subadditive functions, Proc. Amer. Math. Soc. 119 (1993), 187–197.
  • L.P. $\O$sterdal, Subadditive functions and their $($pseudo-$)$inverses, J. Math. Anal. Appl. 317 (2006), 724–731.
  • A.O. Pittenger, The logarithmic mean in $n$ variables, Amer. Math. Month. 92 (1985), 99–104.
  • R.A. Rosenbaum, Sub-additive functions, Duke Math. J. 17 (1960), 489–494.
  • J. Sándor, A bibliography on gamma functions: Inequalities and applications, http://www.math.ubbcluj.ro/$\sim$ jsandor/letolt/art42.pdf.
  • Y. Song, Y. Chu and L. Wu, An elementary double-inequality for gamma function, Int. J. Pure Appl. Math. 38 (2007), 549–554.
  • L. Wu and Y. Chu, An inequality for the psi functions, Appl. Math. Sci. 2 (2008), 545–550.
  • X. Zhang and Y. Chu, An inequality involving the gamma function and the psi function, Int. J. Mod. Math. 3 (2008), 67–73.
  • T.-H. Zhao and Y.-M. Chu, A class of logarithmically completely monotonic functions associated with a gamma function, J. Inequal. Appl. 2010, Article ID 392431, 11 pages.
  • T.-H. Zhao, Y.-M. Chu and Y.-P. Jiang, Monotonic and logarithmically convex properties of a function involving gamma functions, J. Inequal. Appl. 2009, Article ID 728612, 13 pages.
  • T.-H. Zhao, Y.-M. Chu and H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal. 2011, Article ID 896483, 13 pages.