Open Access
2014 Strong commutativity preserving maps on rings
Zhaofang Bai, Shuanping Du
Rocky Mountain J. Math. 44(3): 733-742 (2014). DOI: 10.1216/RMJ-2014-44-3-733

Abstract

Suppose $\R$ is a unital ring having an idempotent element $e$ which satisfies $a{\R}e=0$ implies $a=0$ and $a{\R}(1-e)=0$ implies $a=0$. In this paper, we aim to characterize the map $f:{\R}\rightarrow {\R}$, $f$ is surjective and $[f(x),f(y)]=[x,y]$ for all $x,y\in {\R}$. It is shown that $f(x)=\alpha x +\xi (x)$ for all $x\in {\R}$, where $\alpha \in {\Z}({\R})$, $\alpha^2=1$, and $\xi$ is a map from ${\R}$ into ${\Z}({\R})$. As an application, a characterization of nonlinear surjective maps preserving strong commutativity on von Neumann algebras with no central summands of type $I_1$ is obtained.

Citation

Download Citation

Zhaofang Bai. Shuanping Du. "Strong commutativity preserving maps on rings." Rocky Mountain J. Math. 44 (3) 733 - 742, 2014. https://doi.org/10.1216/RMJ-2014-44-3-733

Information

Published: 2014
First available in Project Euclid: 28 September 2014

zbMATH: 1312.16041
MathSciNet: MR3264479
Digital Object Identifier: 10.1216/RMJ-2014-44-3-733

Subjects:
Primary: 16N60. , 16U80

Keywords: Ring , Strong commutativity preserving , von Neumann algebra

Rights: Copyright © 2014 Rocky Mountain Mathematics Consortium

Vol.44 • No. 3 • 2014
Back to Top