Abstract
The Stieltjes constants $\gamma_k(a)$ appear as the coefficients in the regular part of the Laurent expansion of the Hurwitz zeta function $\zeta(s,a)$ about $s=1$. We present series representations of these constants of interest to theoretical and computational analytic number theory. A particular result gives an addition formula for the Stieltjes constants. As a byproduct, expressions for derivatives of all orders of the Stieltjes coefficients are given. Many other results are obtained, including instances of an exponentially fast converging series representation for $\gamma_k=\gamma_k(1)$. Some extensions are briefly described, as well as the relevance to expansions of Dirichlet $L$ functions.
Citation
Mark W. Coffey. "Series representations for the Stieltjes constants." Rocky Mountain J. Math. 44 (2) 443 - 477, 2014. https://doi.org/10.1216/RMJ-2014-44-2-443
Information