Rocky Mountain Journal of Mathematics

*-Maximum lattice-ordered groups

Anthony W. Hager

Full-text: Open access


The category $W$ is archimedean $l$-groups $G$ with distinguished weak order unit $e_G$, with unit-preserving $l$-group homomorphisms. For $G$ in $W$, $G^*$ denotes the convex sub-$l$-group generated by $e_G$. If $G$ satisfies [any isomorphism of $H^*$ with $G^*$ extends to an embedding of $H$ in $G$], then $G$ is called $\ast$-maximum. ($H^*$ and $G^*$ are isomorphic if and only if the unit intervals $[0, e_H]$ and $[0, e_G]$ are isomorphic MV-algebras.) This paper analyzes the property ``$\ast$-maximum'': Several characterizations are given. It is shown that any $\ast$-maximum $G$ has quasi-F Yosida space; this applies to prove a conjecture of the author and J\. Martinez about ``rings of $\omega_1$-quotients.'' It is shown that each $G$ in $W$ has a $\ast$-maximum hull, and this hull is described.

Article information

Rocky Mountain J. Math., Volume 43, Number 6 (2013), 1901-1930.

First available in Project Euclid: 25 February 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 06F20: Ordered abelian groups, Riesz groups, ordered linear spaces [See also 46A40] 46E05: Lattices of continuous, differentiable or analytic functions 54G05: Extremally disconnected spaces, $F$-spaces, etc.
Secondary: 03B50: Many-valued logic 18A40: Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.) 54C30: Real-valued functions [See also 26-XX]

Lattice-ordered group Archimedean order unit hull pseudo-adjoint quasi-F space uniform approximation ring of quotients MValgebra


Hager, Anthony W. *-Maximum lattice-ordered groups. Rocky Mountain J. Math. 43 (2013), no. 6, 1901--1930. doi:10.1216/RMJ-2013-43-6-1901.

Export citation


  • M. Anderson and T. Feil, Lattice ordered groups; An introduction, Reidel Texts, Math Sci., Kluwer, 1988.
  • R. Ball and A. Hager, Epicompletion of archimedean $l$-groups and vector lattices with weak unit, J. Aust. Math. Soc. 48 (1990), 25-56.
  • R. Blair and A. Hager, Extension of zero-sets and real-valued functions, Math. Z. 136 (1974), 41-52.
  • R. Cignoli, I. D'Ottaviano and D. Mundici, Algebraic foundations of many-valued reasoning, in Trends in logic, vol. 7., Kluwer Academic Press, Dordrecht, 2000.
  • F. Dashiell, A. Hager and M. Henriksen, Order-Cauchy completions of rings and vector lattices of continuous functions, Canad. J. Math. 32 (1980), 657-685.
  • R. Engelking, General topology, Heldermann, Lemgo, Germany, 1989.
  • L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, New York, 1960.
  • A. Hager, Minimal covers of topological spaces, Ann. NY Acad. Sci., Papers on Gen. Topol. and Rel. Cat. Th. and Top. Alg. 552 (1989), 44-59.
  • –––, Local/global uniform approximation of real-valued functions, Comm. Math. Univ. Car. 52 (2011), 283-291.
  • A. Hager and D. Johnson, Some comments and examples of $($hyper-$)$archimedean $l$-groups and $f$-rings, Ann. Fac. Sci. Toulouse Math. 19 (2010), 75-100.
  • A. Hager and J. Martinez, Fraction-dense algebras and spaces, Canad. J. Math. 45 (1993), 977-996.
  • –––, $\alpha$-projectable and laterally $\alpha$-complete archimedean lattice-ordered groups, SINET: Ethiop. J. Sci. (Supplement) (1996), 73-84.
  • –––, The ring of $\alpha$-quotients, Alg. Univ. 47 (2002), 157-182.
  • A. Hager and L. Robertson, Representing and ringifying a Riesz space, Sympos. Math. 21 (1977), 411-431.
  • A. Hager and L. Robertson, Extremal units in an archimedean Reisz space, Rend. Sem. Mat. Univ. Padova 59 (1978), 97-115.
  • –––, On the embedding into a ring of an archimedean $l$-group, Canad. J. Math. 31 (1979), 1-8.
  • M. Henriksen and D. Johnson, On the structure of a class of lattice-ordered algebras, Fund. Math. 50 (1961), 73-94.
  • M. Henriksen, J. Vermeer and G. Woods, Quasi- F covers of Tychonoff spaces, Trans. Amer. Math. Soc. 303 (1987), 779-803.
  • –––, Wallman covers of compact spaces, Dissert. Math. 280 (1989), 1-31.
  • H. Herrlich and G. Strecker, Category theory, Allyn and Bacon, Boston, 1973.
  • R. Levy, Almost $P$-spaces, Canad. J. Math. 29 (1977), 284-288.
  • J. Martinez, Hull classes of archimedean lattice-ordered groups with unit: a survey, in Ord. alg. structures, J. Martinez, ed., Kluwer, Dordrecht, 2002.
  • J. Porter and G. Woods, Extensions and absolutes of Hausdorff spaces, Springer Verlag, New York, 1988.
  • M. Stone, The generalized Weierstrass approximation theorem, Math. Mag. 21 (1948), 167-184.
  • A. Veksler, V. Zaharov and A. Koldunov, Spaces of continuous extended functions, Sov. Math. Dokl. 23 (1981), 167-172.
  • V. Zaharov and A. Koldunov, The sequential absolute and its characterizations, Sov. Math. Doki. 22 (1980), 70-74. \noindentstyle