Rocky Mountain Journal of Mathematics

Measures of noncompactness and asymptotic stability of solutions of a quadratic Hammerstein integral equation

Józef Banaś, Donal O'Regan, and Ravi P. Agarwal

Full-text: Open access

Article information

Source
Rocky Mountain J. Math. Volume 41, Number 6 (2011), 1769-1792.

Dates
First available in Project Euclid: 8 November 2011

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1320787675

Digital Object Identifier
doi:10.1216/RMJ-2011-41-6-1769

Mathematical Reviews number (MathSciNet)
MR2854736

Zentralblatt MATH identifier
1236.45003

Keywords
Quadratic integral equation Banach space measure of noncompactness fixed point theorem of Darbo type asymptotic stability

Citation

Banaś, Józef; O'Regan, Donal; Agarwal, Ravi P. Measures of noncompactness and asymptotic stability of solutions of a quadratic Hammerstein integral equation. Rocky Mountain J. Math. 41 (2011), no. 6, 1769--1792. doi:10.1216/RMJ-2011-41-6-1769. https://projecteuclid.org/euclid.rmjm/1320787675.


Export citation

References

  • R.P. Agarwal and D. O'Regan, Infinite interval problems for differential, difference and integral equations, Kluwer Academic Publishers, Dordrecht, 2001.
  • R.P. Agarwal, D. O'Regan and P.J.Y. Wong, Positive solutions of differential, difference and integral equations, Kluwer Academic Publishers, Dordrecht, 1999.
  • J. Appell and P.P. Zabrejko, Nonlinear superposition operators, Cambridge Tracts Math. 95, Cambridge University Press, 1990.
  • J.M. Ayerbe Toledano, T. Dominguez Benavides and G. Lopez Acedo, Measures of noncompactness in metric fixed point theory, Birkhäser, Basel, 1997.
  • J. Banaś, Measures of noncompactness in the space of continuous tempered functions, Demonstr. Math. 14 (1981), 127-133.
  • J. Banaś and K. Goebel, Measures of noncompactness in Banach spaces, Lect. Notes Pure Appl. Math. 60, Dekker, New York, 1980.
  • J. Banaś, D. O'Regan and K. Sadarangani, On solutions of a quadratic Hammerstein integral equation on an unbounded interval, Dynamic Syst. Appl. 18 (2009), 251-264.
  • J. Banaś, J. Rocha Martin and K. Sadarangani, On solutions of a quadratic integral equation of Hammerstein type, Math. Comput. Model. 43 (2006), 97-104.
  • J. Banaś and B. Rzepka, An application of a measure of noncompactness in the study of asymptotic stability, Appl. Math. Lett. 16 (2003), 1-6.
  • S. Chandrasekhar, Radiative transfer, Dover Publications, New York, 1960.
  • C. Corduneanu, Integral equations and applications, Cambridge University Press, Cambridge, 1991.
  • G. Darbo, Punti uniti in transformazioni a condominio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92.
  • K. Deimling, Nonlinear functional analysis, Springer Verlag, Berlin, 1985.
  • G.M. Fichtenholz, Differential and integral calculus II, PWN, Warsaw, 1980 (in Polish).
  • S. Hu, M. Khavanin and W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Anal. 34 (1989), 261-266.
  • X. Hu and J. Yan, The global attractivity and asymptotic stability of solution of a nonlinear integral equation, J. Math. Anal. Appl. 321 (2006), 147-156.
  • C.T. Kelly, Approximation of solutions of some quadratic integral equations in transport theory, J. Integral Equations 4 (1982), 221-237.
  • M. Kuczma, Functional equations in a single variable, Monograf. Mat. 46, Warsaw, 1968.
  • D. O'Regan and M. Meehan, Existence theory for nonlinear integral and integrodifferential equations, Kluwer Academic Publishers, Dordrecht, 1998.
  • R. Stańczy, Hammerstein equations with an integral over a noncompact domain, Ann. Polon. Math. 69 (1998), 49-60.
  • M. Väth, Volterra and integral equations of vector functions, Pure Appl. Math., Dekker, New York, 2000.
  • P.P. Zabrejko, A.I. Koshelev, M.A. Krasnosel'skii, S.G. Mikhlin, L.S. Rakovschik and J. Stetsenko, Integral equations, Nordhoff, Leyden, 1975.