Rocky Mountain Journal of Mathematics

Value distribution of differences of meromorphic functions

J.K. Langley

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 41, Number 1 (2011), 275-291.

Dates
First available in Project Euclid: 7 February 2011

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1297088426

Digital Object Identifier
doi:10.1216/RMJ-2011-41-1-275

Mathematical Reviews number (MathSciNet)
MR2845945

Zentralblatt MATH identifier
1213.30054

Citation

Langley, J.K. Value distribution of differences of meromorphic functions. Rocky Mountain J. Math. 41 (2011), no. 1, 275--291. doi:10.1216/RMJ-2011-41-1-275. https://projecteuclid.org/euclid.rmjm/1297088426


Export citation

References

  • M. Ablowitz, R.G. Halburd and B. Herbst, On the extension of the Painlevé property to difference equations, Nonlinearity 13 (2000), 889-905.
  • J.M. Anderson and J. Clunie, Slowly growing meromorphic functions, Comment. Math. Helv. 40 (1966), 267-280.
  • P.D. Barry, On a theorem of Kjellberg, Quart. J. Math. Oxford 15 (1964), 179-191.
  • W. Bergweiler and J.K. Langley, Zeros of differences of meromorphic functions, Math. Proc. Camb. Phil. Soc. 142 (2007), 133-147.
  • Y.M. Chiang and S.J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J. 16 (2008), 105-129.
  • A. Eremenko, J.K. Langley and J. Rossi, On the zeros of meromorphic functions of the form $ \sum_k=1^\infty \frac a_k z - z_k $, J. d'Analyse Math. 62 (1994), 271-286.
  • A.A. Gol'dberg and O.P. Sokolovskaya, Some relations for meromorphic functions of order or lower order less than one, Izv. Vyssh. Uchebn. Zaved. Mat. 31 (1987), 26-31; Soviet Math. (Izv. VUZ) 31 (1987), 29–35 (in English).
  • R.G. Halburd and R. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), 477-487.
  • –––, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. 31 (2006), 463-478.
  • W.K. Hayman, Meromorphic functions, Oxford at the Clarendon Press, 1964.
  • –––, The local growth of power series: A survey of the Wiman-Valiron method, Canad. Math. Bull. 17 (1974), 317-358.
  • –––, Subharmonic functions, Vol. 2, Academic Press, London, 1989.
  • J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo and K. Tohge, Complex difference equations of Malmquist type, Comput. Methods Funct. Theory 1 (2001), 27-39.
  • S. Hellerstein, J. Miles and J. Rossi, On the growth of solutions of $f ^\pp + gf^\p + hf = 0$, Trans. Amer. Math. Soc. 324 (1991), 693-706.
  • –––, On the growth of solutions of certain linear differential equations, Ann. Acad. Sci. Fenn. %Ser. A. I. Math. 17 (1992), 343-365.
  • J.D. Hinchliffe, The Bergweiler-Eremenko theorem for finite lower order, Result. Math. 43 (2003), 121-128.
  • K. Ishizaki and N. Yanagihara, Wiman-Valiron method for difference equations, Nagoya Math. J. 175 (2004), 75-102.
  • J.K. Langley, On differential polynomials, fixpoints and critical values of meromorphic functions, Result. Math. 35 (1999), 284-309.
  • –––, Composite Bank-Laine functions and a question of Rubel, Trans. Amer. Math. Soc. 354 (2002), 1177-1191.
  • Jim Langley and Janis Meyer, A generalisation of the Bank-Laine property, Comput. Methods Funct. Theory 9 (2009), 213-225.
  • J.K. Langley and John Rossi, Critical points of certain discrete potentials, Complex Variables 49 (2004), 621-637.
  • J.K. Langley and D.F. Shea, On multiple points of meromorphic functions, J. London Math. Soc. 57 (1998), 371-384.
  • J. Miles and J. Rossi, Linear combinations of logarithmic derivatives of entire functions with applications to differential equations, Pacific J. Math. 174 (1996), 195-214.
  • M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1959.
  • J.M. Whittaker, Interpolatory function theory, Cambridge Tract No. 33, Cambridge University Press, Cambridge, 1935.