Rocky Mountain Journal of Mathematics

An identity of the symmetry for the Frobenius-Euler polynomials associated with the Fermionic $p$-adic invariant $q$-integrals on ${\bf Z}_p$

Taekyun Kim

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 41, Number 1 (2011), 239-247.

Dates
First available in Project Euclid: 7 February 2011

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1297088424

Digital Object Identifier
doi:10.1216/RMJ-2011-41-1-239

Mathematical Reviews number (MathSciNet)
MR2845943

Zentralblatt MATH identifier
1238.11022

Subjects
Primary: 11B68: Bernoulli and Euler numbers and polynomials 11S80: Other analytic theory (analogues of beta and gamma functions, $p$-adic integration, etc.)

Keywords
Fermionic p -adic q -integral Frobenius-Euler number. The present research has been conducted by a research Grant from Kwangwoon University in 2008

Citation

Kim, Taekyun. An identity of the symmetry for the Frobenius-Euler polynomials associated with the Fermionic $p$-adic invariant $q$-integrals on ${\bf Z}_p$. Rocky Mountain J. Math. 41 (2011), no. 1, 239--247. doi:10.1216/RMJ-2011-41-1-239. https://projecteuclid.org/euclid.rmjm/1297088424


Export citation

References

  • M. Cenkci, M. Can and V. Kurt, $p$-adic interpolation functions and Kummer-type congruences for $q$-twisted Euler numbers, Adv. Stud. Contemp. Math. 9 (2004), 203-216.
  • L. Comtet, Advanced combinatories, Reidel, Dordrecht, 1974.
  • E. Deeba and D. Rodriguez, Stirling's series and Bernoulli numbers, Amer. Math. Monthly 98 (1991), 423-426.
  • F.T. Howard, Application of a recurrence for the Bernoulli numbers, J. Number Theory 52 (1995), 157-172.
  • T. Kim, The modified $q$-Euler numbers and polynomials, Adv. Stud. Contemp. Math. 16 (2008), 161-170.
  • T. Kim, Euler numbers and polynomials associated with zeta functions, Abstract Appl. Anal. 2008 (2008), 11 pages (Article ID 581582).
  • –––, $q-$Volkenborn integration, Russian J. Math. Phys. 9 (2002), 288-299.
  • –––, A Note on $p$-adic $q$-integral on $\bf Z_p$ associated with $q$-Euler numbers, Adv. Stud. Contemp. Math. 15 (2007), 133-138.
  • –––, On $p$-adic interpolating function for $q$-Euler numbers and its derivatives, J. Math. Anal. Appl. 339 (2008), 598-608.
  • –––, $q$-Extension of the Euler formula and trigonometric functions, Russian J. Math. Phys. 14 (2007), 275-278.
  • –––, Power series and asymptotic series associated with the $q$-analog of the two-variable $p$-adic $L$-function, Russian J. Math. Phys. 12 (2005), 186-196.
  • –––, Non-Archimedean $q$-integrals associated with multiple Changhee $q$-Bernoulli polynomials, Russian J. Math. Phys. 10 (2003), 91-98.
  • –––, $q$-Euler numbers and polynomials associated with $p$-adic $q$-integrals, J. Nonlinear Math. Phys. 14 (2007), 15-27.
  • B.A. Kupershmidt, Reflection symmetries of $q$-Bernoulli polynomials, J. Nonlinear Math. Phys. 12 (2005), 412-422.
  • H. Ozden, Y. Simsek, S.-H. Rim and I.N. Cangul, A note on $p$-adic $q$-Euler measure, Adv. Stud. Contemp. Math. 14 (2007), 233-239.
  • M. Schork, Ward's “calculus of sequences," $q$-calculus and the limit $q\to-1$, Adv. Stud. Contemp. Math. 13 (2006), 131-141.
  • –––, Combinatorial aspects of normal ordering and its connection to $q$-calculus, Adv. Stud. Contemp. Math. 15 (2007), 49-57.
  • K. Shiratani and S. Yamamoto, On a $p$-adic interpolation function for the Euler numbers and its derivatives, Memo. Fac. Sci. Kyushu University Ser.A, 39 (1985), 113-125.
  • Y. Simsek, On $p$-adic twisted $q\text-L$-functions related to generalized twisted Bernoulli numbers, Russian J. Math. Phys. 13 (2006), 340-348.
  • –––, Theorems on twisted $L$-function and twisted Bernoulli numbers, Adv. Stud. Contemp. Math. 11 (2005), 205-218.
  • –––, $q$-Dedekind type sums related to $q$-zeta function and basic $L$-series, J. Math. Anal. Appl. 318 (2006), 333-351.
  • H.J.H. Tuenter, A Symmetry of power sum polynomials and Bernoulli numbers, Amer. Math. Monthly 108 (2001), 258-261.