Rocky Mountain Journal of Mathematics

Explicit Estimate on Primes Between Consecutive Cubes

Yuan-You Fu-Rui Cheng

Full-text: Open access

Article information

Rocky Mountain J. Math., Volume 40, Number 1 (2010), 117-153.

First available in Project Euclid: 15 March 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 11Y35: Analytic computations 11N05: Distribution of primes

Ingham's theorem primes in short interval explicit estimates density theorem divisors


Cheng, Yuan-You Fu-Rui. Explicit Estimate on Primes Between Consecutive Cubes. Rocky Mountain J. Math. 40 (2010), no. 1, 117--153. doi:10.1216/RMJ-2010-40-1-117.

Export citation


  • L.V. Ahlfors, Complex analysis, 2nd ed., McGraw-Hill Book Company, New York, 1979.
  • R.C. Baker and G. Harman, The difference between consecutive primes, Proc. London Math. Soc. 2 (1996), 261.
  • C. Caldwell and Y. (Fred) Cheng, Determining Mills' constants and a note on Honaker's problem J. Integer Sequences 8 (2005), 1-9.
  • K. Chandrasekharan, Arithmetical functions, Springer-Verlag, New York, 1970.
  • Y. (Fred) Cheng, Explicit estimates involving divisor functions, J. Number Theory, submitted.
  • Y. (Fred) Cheng and Sidney W. Graham, Explicit estimates for the Riemann zeta function, Rocky Mountain J. Math. 34 (2004), 1261-1290.
  • Y. (Fred) Cheng and Barnet Weinstock, Explicit estimates on prime numbers, Rocky Mountain J. Math., accepted.
  • H. Davenport, Multiplicative number theory, Springer-Verlag, New York, 1980.
  • H.M. Edwards, Riemann's zeta-function, Academic Press, New York, 1974.
  • K. Ford, Zero-free regions for the Riemann zeta-function, Proc. Millenial Conference on Number Theory, Urbana, IL, 2000.
  • D.A. Goldston and S.M. Gonek, A note on the number of primes in short intervals, Proc. Amer. Math. Soc. 3 (1990), 613-620.
  • G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, 5th ed., Clarendon Press, Oxford, 1979.
  • G. Hoheisel, Primzahlprobleme in der Analysis, Sitz. Preuss. Akad. Wiss. 33 (1930), 580-588.
  • M.N. Huxley, The distribution of prime numbers, Oxford University Press, Oxford, 1972.
  • A.E. Ingham, On the estimation of $N(\sigma, T)$, Quart. J. Math. 11 (1940), 291-292.
  • K. Ireland and M. Rosen, A classical introduction to modern number theory, 2nd ed., Springer-Verlag, New York, 1990.
  • A. Ivić, The Riemann zeta function, John Wiley & Sons, New York, 1985.
  • H. Iwaniec and J. Pintz, Primes in short intervals, Monat. Math. 98 (1984), 115-143.
  • L. Kaniecki, On differences of primes in short intervals under the Riemann hypothesis, Demonstrat. Math 1 (1998), 121-124.
  • F. Kevin, A new result on the upper bound for the Riemann zeta function, preprint, 2001.
  • H.L. Montgomery, Zeros of $L$-functions, Invent. Math. 8 (1969), 346-354.
  • J.B. Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941), 211-232.
  • J.B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.
  • --------, Sharper bounds for Chebyshev functions $\theta(x)$ and $\psi(x)$ I, Math. Comp. 29 (1975), 243-269.
  • L. Schoenfeld, Sharper bounds for Chebyshev functions $\theta(x)$ and $\psi(x)$ II, Math. Comp. 30 (1976), 337-360.
  • Titchmarsh, The theory of the Riemann zeta function, Oxford Science Publications, 1986.
  • J. Van de Lune, H.J.J. te Diele and D.T. Winter, On the zeros of the Riemann zeta function in the critical strip, IV, Math. Comp. 47 (1986), 67-681.
  • C.Y. Yildirim, A survey of results on primes in short intervals, in Number theory and its applications, %(Ankara, 1996), Lecture Notes in Pure and Appl. Math. 204 Dekker, New York, 1999.
  • D. Zinoviev, On Vinogradov's constant in Goldbach's ternary problem, J. Number Theory 65 (1997), 334-358.