Rocky Mountain Journal of Mathematics

Inherent Compactness of Upper Continuous Set Valued Maps

Brian L. Davis and Iwo Labuda

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 39, Number 2 (2009), 463-484.

Dates
First available in Project Euclid: 7 April 2009

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1239113441

Digital Object Identifier
doi:10.1216/RMJ-2009-39-2-463

Mathematical Reviews number (MathSciNet)
MR2491147

Zentralblatt MATH identifier
1171.54016

Subjects
Primary: 54C60: Set-valued maps [See also 26E25, 28B20, 47H04, 58C06]

Keywords
Upper semi continuous set-valued map active boundary Choquet kernel Văıns˘te˘ın-Choquet-Dolecki theorem compact filter base

Citation

Davis, Brian L.; Labuda, Iwo. Inherent Compactness of Upper Continuous Set Valued Maps. Rocky Mountain J. Math. 39 (2009), no. 2, 463--484. doi:10.1216/RMJ-2009-39-2-463. https://projecteuclid.org/euclid.rmjm/1239113441


Export citation

References

  • G. Beer, Topologies on closed and closed convex sets, Kluwer Academic Press, New York, 1993.
  • N. Bourbaki, Topologie générale, Hermann, Paris, 1940.
  • A. Bouziad, The Ellis theorem and continuity in groups, Topology Appl. 50 (1993), 73-80.
  • Jiling Cao, Generalized metric properties and kernels of set-valued maps, Topology Appl. 146-147 (2005), 603-609.
  • J. Cao, W. Moors and I. Reilly, On the Choquet-Dolecki theorem, J. Math. Anal. Appl. 234 (1999), 1-5.
  • --------, Topological properties defined by games and their applications, Topology Appl. 123 (2002), 47-55.
  • B. Cascales and L. Oncina, Compactoid filters and usco maps, J. Math. Anal. Appl. 282 (2003), 826-845.
  • B. Cascales and J. Orihuela, A sequential property of set-valued maps, J. Math. Anal. Appl. 156 (1991), 86-100.
  • G. Choquet, Convergences, Ann. Univ. Grenoble 23 (1947), 57-112.
  • Brian L. Davis, Generalized compactness and applications, Ph.D. thesis, The University of Mississippi, 2006.
  • S. Dolecki, Constraints stability and moduli of semicontinuity, preprint prepared for the 2nd IFAC Symposium, Warwick, June 1977.
  • --------, Remarks on semicontinuity, Bull. Acad. Polon. Sci., Sér. Sci. Math. 25 (1977), 863-867.
  • --------, Active boundaries of upper semicontinuous and compactoid relations; Closed and inductively perfect maps, Rostock Math. Kolloq. 54 (2000), 51-68.
  • S. Dolecki, G.H. Greco and A. Lechicki, Compactoid and compact filters, Pacific J.Math. 117 (1985), 69-97.
  • S. Dolecki and A. Lechicki, Semi-continuité supérieure forte et filtres adhérents, C.R. Acad. Sci. Paris 293 (1981), 291-292.
  • --------, On structure of upper semicontinuity, J. Math. Anal. Appl. 88 (1982), 547-554.
  • S. Dolecki and S. Rolewicz, Metric characterizations of upper semicontinuity, J. Math. Anal. Appl. 69 (1979), 146-152.
  • L. Drewnowski and I. Labuda, On minimal upper semicontinuous compact-valued maps, Rocky Mountain J. Math. 20 (1990), 1-16.
  • R. Engelking, General topology, PWN-Polish Scientific Publishers, Warszawa, 1977.
  • W. Gähler, Grundstrukturen der Analysis, Vol. II, Birkhäuser Verlag, Basel, 1978.
  • G. Gruenhage, Generalized metric spaces, in Handbook of set-theoretical topology, North Holland, Amsterdam, 1984.%423-502
  • R. Hansell, J. Jayne, I. Labuda and C.A. Rogers, Boundaries of and selectors for upper semicontinuous multi-valued maps, Math. Z. 189 (1985), 297-318.
  • J. Kelley, General topology, Van Nostrand, New York, 1955.
  • C. Kuratowski, Les fonctions semi-continues dans l'espace des ensembles fermés, Fund. Math. 18 (1932), 148-159.
  • I. Labuda, On a theorem of Choquet and Dolecki, J. Math. Anal. Appl. 126 (1987), 1-10.
  • --------, Boundaries of upper semicontinuous set valued maps, Comm. Math. (Prace Matematyczne) 55 (2005), 225-235.
  • --------, Compactoidness, Rocky Mountain J. Math. 36 (2006), 555-574.
  • E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182.
  • --------, A note on closed maps and compact sets, Israel J. Math. 2 (1964), 173-176.
  • J.P. Penot, Compact nets, filters and relations, J. Math. Anal. Appl. 93 (1983), 400-417.
  • B.J. Pettis, Cluster sets of nets, Proc. Amer. Math. Soc. 22 (1969), 386-391.
  • V.I. Ponomarev, A new space of closed sets and multi-valued continuous mappings of bicompacta, Amer. Math. Soc. Transl. 38 (1964), 93-118.
  • W.L. Strother, Continuous multi-valued functions, Boletim Soc. Math. São Paulo 10 (1955), 87-120.
  • I.A. Vaĭn\usteĭn, On closed mappings of metric spaces, Dokl. Akad. Nauk SSSR 57 (1947), 319-321.
  • J.E. Vaughan, Total nets and filters, in Topology %(Proc. Ninth Annual Spring Topology Conf., Memphis State Univ., Memphis, Tenn., 1975), pp. Lecture Notes Pure Appl. Math. 24 (1976), Dekker, New York.%259-265.