Rocky Mountain Journal of Mathematics

Iterative Approaches to Common Fixed Points of Asymptotically Nonexpansive Mappings

D.R. Sahu, Zeqing Liu, and Shin Min Kang

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 39, Number 1 (2009), 281-304.

Dates
First available in Project Euclid: 4 February 2009

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1233758404

Digital Object Identifier
doi:10.1216/RMJ-2009-39-1-281

Mathematical Reviews number (MathSciNet)
MR2476813

Zentralblatt MATH identifier
1163.47055

Subjects
Primary: 47H06: Accretive operators, dissipative operators, etc. 47H09: Contraction-type mappings, nonexpansive mappings, A-proper mappings, etc.

Keywords
Asymptotically nonexpansive mappings normalized duality mapping weakly continuous duality mapping

Citation

Sahu, D.R.; Liu, Zeqing; Kang, Shin Min. Iterative Approaches to Common Fixed Points of Asymptotically Nonexpansive Mappings. Rocky Mountain J. Math. 39 (2009), no. 1, 281--304. doi:10.1216/RMJ-2009-39-1-281. https://projecteuclid.org/euclid.rmjm/1233758404


Export citation

References

  • F.E. Browder, Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces, Arch. Rational Mech. Anal. 24 (1967), 82-90.
  • --------, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967), 201-225.
  • F.E. Browder and W.V. Petryshyn, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 571-576.
  • K. Geobel and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Sco. 35 (1972), 171-174.
  • --------, Topics in metric fixed point theory, Cambridge Studies Adv. Math. 28, Cambridge University Press, Cambridge, 1990.
  • K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Marcel Dekker, Inc., New York, 1984.
  • J.P. Gossez and E.L. Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math. 40 (1972), 565-573.
  • B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961.
  • J. Haraa, P. Pillay and H.K. Xu, Iterative approaches to finding nearest common fixed points of nonexpansive mappings in Hilbert spaces, Nonlinear Analysis 54 (2003), 1417-1426.
  • Z. Huang, Mann and Ishikawa iterations with errors for asymptotically nonexpansive mapping, Comput. Math. Appl. 37 (1999), 1-7.
  • J.S. Jung, Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 302 (2005), 509-520.
  • J.S. Jung and S.S. Kim, Strong convergence theorems for nonexpansive nonself-mappings in Banach spaces, Nonlinear Anal. Theory Methods Appl. 33 (1998), 321-329.
  • W.A. Kirk, C.M. Yanez and S.S. Shin, Asymptotically nonexapnsive mappings, Nonlinear Analysis, Theory, Methods Appl. 33 (1998), 1-12.
  • P.K. Lin, A uniformly asymptotically regualr mapping without fixed points, Canad. Math. Bull. 30 (1987), 481-483.
  • P.L. Lions, Approximation de points fixes de contractions, C.R. Acad. Sci. Paris 284 (1977), 1357-1359.
  • Z. Liu and S.M. Kang, Weak and strong convergence for fixed points of asymptotically non-expansive mappings, Acta Math. Sinica 20 (2004), 1009-1018.
  • Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
  • M.O. Osilike and S.C. Aniagbosor, Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. Comput. Model. 32 (2000), 1181-1191.
  • G.B. Passty, Construction of fixed points for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 84 (1982), 212-216.
  • S. Reich, Strong convergence theorems for resolvents of operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), 287-292.
  • B.E. Rhoades, Fixed point iterations for certain nonlinear mappings, J. Math. Anal. Appl. 183 (1994), 118-120.
  • J. Schu, Iterative construction of fixed point of asymptotically nonexpansive mapping, J. Math. Anal. Appl. 158 (1991), 407-413.
  • --------, Weak and strong convergence to fixed points of asymptotically nonexpansive mapping, Bull. Austral. Math. Soc. 43 (1991), 153-159.
  • --------, Approximation of fixed points of asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 112 (1991), 143-151.
  • --------, Iterative approximation of fixed points of nonexpansive mappings with strarshaped domain, Comment. Math. Univ. Carolinae 31 (1990), 277-282.
  • S.P. Singh and B. Watson, On approximating points, Proc. Symp. Pure Math. 45 (1998), 393-395.
  • W. Takahashi and G.E. Kim, Strong convergence of approximants to fixed points of nonexpansive nonself-mappings in Banach spaces, Nonlinear Anal. TMA 32 (1998), 447-454.
  • D. Tingley, An asymptotically nonexpansive commutative semigroup with no fixed points, Proc. Amer. Math. Soc. 92 (1984), 355-361.
  • R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992), 486-491.
  • H.K. Xu, Existence and convergence for fixed points for mappings of asymptotically nonexapansive type, Nonlinear Anal. 16 (1991), 1139-1146.
  • H.K. Xu and X. Yin, Strong convergence theorems for nonexpansive nonself mappings, Nonlinear Anal. TMA 24 (1995), 223-228.