Rocky Mountain Journal of Mathematics

An SIS Infection Model Incorporating Media Coverage

Jing-An Cui, Xin Tao, and Huaiping Zhu

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 38, Number 5 (2008), 1323-1334.

Dates
First available in Project Euclid: 22 September 2008

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1222088591

Digital Object Identifier
doi:10.1216/RMJ-2008-38-5-1323

Mathematical Reviews number (MathSciNet)
MR2457362

Zentralblatt MATH identifier
1170.92024

Subjects
Primary: 54B20: Hyperspaces 54F15: Continua and generalizations

Keywords
SIS infection model media coverage basic reproduction number global stability

Citation

Cui, Jing-An; Tao, Xin; Zhu, Huaiping. An SIS Infection Model Incorporating Media Coverage. Rocky Mountain J. Math. 38 (2008), no. 5, 1323--1334. doi:10.1216/RMJ-2008-38-5-1323. https://projecteuclid.org/euclid.rmjm/1222088591


Export citation

References

  • F. Brauer and C. Castillo-Chavez, Mathematical models in population biology and epidemics, Springer-Verlag, New York, 2000.
  • J. Cui, Y. Sun and H. Zhu, The impact of media on the spreading and control of infectious disease, J. Dynamics Differential Equations 20 (2008), 31-53.%DOI:10.1007/s10884-007-9075-0.
  • J. Cui, Y. Takeuchi and Y. Saito, Spreading disease with transport-related infection, J. Theoretical Biol. 239 (2006), 376-390.
  • O. Diekmann and J.A.P. Heesterbeek, Mathematical epidemiology of infectious diseases: Model building, analysis and interpretation, Wiley, New York, 2000.
  • Health Canada, Website:, http:/\!/www.hc-sc.gc.ca/pphb-dgspsp/sars-sras/prof-e.html.
  • W. Kermack and A. McKendrick, Contributions to the mathematical theory of epidemic, Proc. Roy. Soc. London 115 (1927), 700-721.
  • M.A. Khan, M. Rahman, P.A. Khanam, B.E. Khuda, T.T. Kane and A. Ashraf, Awareness of sexually transmitted diseases among woman and service providers in rural Bangladesh, International J. STD AIDS 8 (1997), 688-696.
  • Y. Liu and J. Cui, The impact of media coverage on the dynamics of infectious disease, International J. Biomath. 1 (2008), 1-10.
  • R. Liu, J. Wu and H. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases, Comp. Math. Methods Medicine 8 (2007), 153-164.
  • L. Perko, Differential equations and dynamic systems, Springer, New York, 1996.
  • M.S. Rahman and M.L. Rahman, Media and education play a tremendous role in mounting AIDS awareness among married couples in Bangladesh, AIDS Research Therapy 4 (2007), 10-17.
  • SARS EXPRESS: http://www.syhao.com/sars, /20030623.htm.
  • Z. Shen, et al., Superspreading SARS events, Beijing, 2003. Emerging Infectious Diseases 10 (2004), 256-260.
  • P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), 29-48.
  • W. Wang and S. Ruan, Simulating the SARS outbreak in Beijing with limited data, J. Theoret. Biol. 227 (2004), 369-379.
  • Webb, Blaser, Zhu, Aradl and Wu, Critical role of nosocomial transmission in the Toronto SARS outbreak, Math. Biosci. Engineering 1 (2004), 1-13.
  • WHO, Epidemic curves: Serve acute respiratory syndrome (SARS), http:/\!/www.who.int/csr/sars/epicurve/epiindex/en/print.html.
  • Y. Zhou, Z. Ma and F. Brauer, A discrete epidemic model for SARS transmission and control in China, Math. Computer Model. 40 (2004), 1491-1506.