Rocky Mountain Journal of Mathematics

Philos-Type Oscillation Criteria for Second Order Half-Linear Dynamic Equations on Time Scales

Ravi P. Agarwal, Donal O'Regan, and S.H. Saker

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 37, Number 4 (2007), 1085-1104.

Dates
First available in Project Euclid: 18 August 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1187453098

Digital Object Identifier
doi:10.1216/rmjm/1187453098

Mathematical Reviews number (MathSciNet)
MR2360285

Zentralblatt MATH identifier
1139.34029

Subjects
Primary: 34K11: Oscillation theory 34C10: Oscillation theory, zeros, disconjugacy and comparison theory 93C70: Time-scale analysis and singular perturbations

Keywords
Oscillation second order half-linear dynamic equations time scale

Citation

Agarwal, Ravi P.; O'Regan, Donal; Saker, S.H. Philos-Type Oscillation Criteria for Second Order Half-Linear Dynamic Equations on Time Scales. Rocky Mountain J. Math. 37 (2007), no. 4, 1085--1104. doi:10.1216/rmjm/1187453098. https://projecteuclid.org/euclid.rmjm/1187453098


Export citation

References

  • R.P. Agarwal, M. Bohner, D. O'Regan and A. Peterson, Dynamic equations on time scales: A survey, in special issue ``Dynamic Equations on Time Scales'' (R.P. Agarwal, M. Bohner and D. O'Regan, eds.), J. Comp. Appl. Math. 141 (2002), 1-26. (Preprint in Ulmer Seminare 5)
  • E. Ak\i n, L. Erbe, B. Kaymakçalan and A. Peterson, Oscillation results for a dynamic equation on a time scale, J. Difference Equ. Appl. 7 (2001), 793-810.
  • E.A. Bohner, M. Bohner and S.H. Saker, Oscillation criteria for a certain class of second order Emden-Fowler dynamic equations, Elect. Trans. Numer. Anal., to appear.
  • E.A. Bohner and J. Hoffacker, Oscillation properties of an Emden-Fowler type equations on discrete time scales, J. Difference Equ. Appl. 9 (2003), 603-612.
  • M. Bohner and A. Peterson, Dynamic equations on time scales: An introduction with applications, Birkhäuser, Boston, 2001.
  • M. Bohner and S.H. Saker, Oscillation for perturbed nonlinear dynamic equations, Math. Comput. Modelling, to appear.
  • M. Bohner and S.H. Saker, Oscillation of second order nonlinear dynamic equations on time scales, Rocky Mountain J. Math. 34 (2004), 1239-1254.
  • O. Došlý and S. Hilger, A necessary and sufficient condition for oscillation of the Sturm-Liouville dynamic equation on time scales, in special issue ``Dynamic Equations on Time Scales'' (R.P. Agarwal, M. Bohner and D. O'Regan, eds.), J. Comput. Appl. Math. 141 (2002), 147-158.
  • L. Erbe, Oscillation criteria for second order linear equations on a time scale, Canad. Appl. Math. Quart. 9 (2001), 1-31.
  • L. Erbe and A. Peterson, Positive solutions for a nonlinear differential equation on a measure chain, Math. Comput. Modelling, 32 (2000), 571-585.
  • --------, Riccati equations on a measure chain, in Proc. of Dynamic Syst. and Applications (G.S. Ladde, N.G. Medhin and M. Sambandham, eds.), vol. 3, Dynamic Publ., Atlanta, 2001, pp. 193-199.
  • --------, Oscillation criteria for second order matrix dynamic equations on a time scale, in special issue ``Dynamic Equations on Time Scales''(R.P. Agarwal, M. Bohner and D. O'Regan, eds.), J. Comput. Appl. Math. 141 (2002), 169-185.
  • --------, Boundedness and oscillation for nonlinear dynamic equations on a time scale, Proc. Amer. Math. Soc. 132 (2004), 735-744.
  • L. Erbe, A. Peterson and S.H. Saker, Oscillation criteria for second-order nonlinear dynamic equations on time scales, J. London Math. Soc. (2) 67 (2003), 701-714.
  • S.C. Fu and L.Y. Tasi, Oscillation in nonlinear difference equations, Comput. Math. Appl. 36 (1998), 193-201.
  • S. Hilger, Analysis on measure chains-A unified approach to continuous and discrete calculus, Results Math. 18 (1990), 18-56.
  • H.J. Li, Oscillation criteria for half-linear second order differential equations, Hiroshima Math. J. 25 (1995), 571-583.
  • --------, Oscillation criteria for second order linear differential equations, J. Math. Anal. Appl. 194 (1995), 312-321.
  • J.V. Manojlovic, Oscillation criteria for second-order half-linear differential equations, Math. Comput. Modelling 30 (1999), 109-119.
  • S.H.G. Olumolode, N. Pennington and A. Peterson, Oscillation of an euler-cauchy dynamic equation, Proc. Fourth Internat. Conf. Dynam. Syst. and Differential Equations (Wilmington, DE, 2002), pp. 24-27.
  • Ch.G. Philos, Oscillation theorems for linear differential equation of second order, Arch. Math. 53 (1989), 483-492.
  • P. Rehak, Hartman-Wintner type lemma, oscillation and conjugacy criteria for half-linear difference equations, J. Math. Anal. Appl. 252 (2000), 813-827.
  • --------, Generalized discrete Riccati equations and oscillation of half-linear difference equations, Math. Comput. Modelling 34 (2001), 257-269.
  • S.H. Saker, Oscillation of nonlinear dynamic equations on time scales, Appl. Math. Comput. 148 (2004), 81-91.
  • S.H. Saker, P.Y.H. Pang and Ravi P. Agarwal, Oscillation theorems for second order nonlinear functional differential equations with damping, Dynam. Systems Appl. 12 (2003), 307-322.
  • H.R. Sun and W.T. Li, Positive solutions of second order half-linear dynamic equations on time scales, Appl. Math. Comput., in press.
  • E. Thandapani, M.M.S. Manuel, J.G. Graef and P.W. Spikes, Monotone properties of certain classes of solutions of second order difference equations, Comput. Math. Appl. 36 (1998), 291-297.
  • E. Thandapani and K. Ravi, Bounded and monotone properties of solutions of second-order quasilinear forced difference equations, Comput. Math. Appl. 38 (1999), 113-121.
  • --------, Oscillation of second-order half-linear difference equations, Appl. Math. Lett. 13 (2000), 43-49.
  • E. Thandapani, K. Ravi and J.G. Greaf, Oscillation and comparison theorems for half-linear second order difference equations, Comput. Math. Appl. 42 (2001), 953-960.