Rocky Mountain Journal of Mathematics

On the Diophantine Equation $\bf 1+x+y=z$

Leo J. Alex and Lorraine L. Foster

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 22, Number 1 (1992), 11-62.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181072793

Digital Object Identifier
doi:10.1216/rmjm/1181072793

Mathematical Reviews number (MathSciNet)
MR1159941

Zentralblatt MATH identifier
0760.11013

Citation

Alex, Leo J.; Foster, Lorraine L. On the Diophantine Equation $\bf 1+x+y=z$. Rocky Mountain J. Math. 22 (1992), no. 1, 11--62. doi:10.1216/rmjm/1181072793. https://projecteuclid.org/euclid.rmjm/1181072793


Export citation

References

  • L.J. Alex, Diophantine equations related to finite groups, Comm. Algebra 4 (1976), 77-100.
  • --------, The diophantine equation $3^a+5^b=7^c+11^d$, The Mathematics Student 48 (1980), 134-138.
  • --------, Simple groups and a diophantine equation, Pacific J. Math. 104 (1983), 257-262.
  • L.J. Alex and L.L. Foster, On diophantine equations of the form $1+2^a=p^bq^c+2^dp^eq^f$, Rocky Mountain J. Math. 13 (1983), 321-331.
  • --------, On the diophantine equation $1+p^a=2^b+2^cp^d$, Rocky Mountain J. Math. 15 (1985), 739-761.
  • J.L. Brenner and L.L. Foster, Exponential diophantine equations, Pacific J. Math. 101 (1982), 263-301.
  • E. Dubois and G. Rhin, Sur la majoration de formes linéares à coefficients algébriques réels et p-adiques: Demonstration d'une conjecture de K. Mahler, C.R. Acad. Sci. Paris, A 282 (1876), 1211-1214.
  • H.P. Schickewei, Über die Diophantische Gleichung $x_1+x_2+\cdots+x_n=0$, Acta Arith. 33 (1977), 183-185.