Rocky Mountain Journal of Mathematics

Some Examples of Mixing Random Fields

Richard C. Bradley

Full-text: Open access

Article information

Rocky Mountain J. Math., Volume 23, Number 2 (1993), 495-519.

First available in Project Euclid: 5 June 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60G60: Random fields
Secondary: 60G10: Stationary processes

Strictly stationary random field strong mixing


Bradley, Richard C. Some Examples of Mixing Random Fields. Rocky Mountain J. Math. 23 (1993), no. 2, 495--519. doi:10.1216/rmjm/1181072573.

Export citation


  • R.C. Bradley, On the central limit question under absolute regularity, Ann. Probab. 13 (1985), 1314-1325.
  • --------, A caution on mixing conditions for random fields, Statist. Probab. Lett. 8 (1989), 489-491.
  • --------, On the spectral density and asymptotic normality of weakly dependent random fields, J. Theor. Probab. 5 (1992), 355-373.
  • --------, Equivalent mixing conditions for random fields, Technical Report No. 336, March 1991, Center for Stochastic Processes, Department of Statistics, University of North Carolina, Chapel Hill. To appear in Ann. Probab.
  • P. Csaki and J. Fischer, On the general notion of maximal correlation, Magyar Tud. Akad. Mat. Kutató Int. Közl 8 (1963), 27-51.
  • R.L. Dobrushin, The description of a random field by means of conditional probabilities and conditions of its regularity, Theory Probab. Appl. 13 (1968), 197-224.
  • C.M. Goldie and P.E. Greenwood, Central limit results for random fields, in Proceedings of the First World Congress of the Bernoulli Society (Yu. Prohorov and V.V. Sazonov, eds.), Vol. 1, Probability Theory and Applications, VNU Science Press, Utrecht, 1987, 345-352.
  • X. Guyon and S. Richardson, Rate of convergence of the central limit theorem for weakly dependent fields, Z. Wahrsch. verw. Gebiete 66 (1984), 297-314 (in French).
  • A.V. Ivanov and N.N. Leonenko, Statistical analysis of random fields, Kluwer, Boston, 1989.
  • C.C. Neaderhouser, An almost sure invariance principle for partial sums associated with a random field, Stochastic Process. Appl. 11 (1981), 1-10.
  • M. Peligrad, Invariance principles under weak dependence, J. Multivariate Anal. 19 (1986), 299-310.
  • M. Rosenblatt, Stationary sequences and random fields, Birkhäuser, Boston, 1985.
  • M. Sherman, Proposal for the Ph.D. Dissertation, University of North Carolina, May, 1990.
  • L.T. Tran, Kernel density estimation on random fields, J. Multivariate Anal. 34 (1990), 37-53.
  • H.S. Witsenhausen, On sequences of pairs of dependent random variables, SIAM J. Appl. Math. 28 (1975), 100-113.
  • I.G. Zhurbenko, The spectral analysis of time series, North-Holland, Amsterdam, 1986.