Rocky Mountain Journal of Mathematics

Conformal Invariants for Curves and Surfaces in Three Dimensional Space Forms

Grant Cairns, Richard Sharpe, and Lynette Webb

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 24, Number 3 (1994), 933-959.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181072381

Digital Object Identifier
doi:10.1216/rmjm/1181072381

Mathematical Reviews number (MathSciNet)
MR1307584

Zentralblatt MATH identifier
0829.53009

Subjects
Primary: 53A30: Conformal differential geometry
Secondary: 53B25: Local submanifolds [See also 53C40]

Keywords
Conformal invariant curve surface

Citation

Cairns, Grant; Sharpe, Richard; Webb, Lynette. Conformal Invariants for Curves and Surfaces in Three Dimensional Space Forms. Rocky Mountain J. Math. 24 (1994), no. 3, 933--959. doi:10.1216/rmjm/1181072381. https://projecteuclid.org/euclid.rmjm/1181072381


Export citation

References

  • V. Arnold, A. Varchenko and S. Goussein-zadé, Singularities of differentiable maps, Vol. 1, Birkhauser, 1985.
  • T. Banchoff and J. White, The behavior of the total twist and self-linking number of a closed space curve under inversions, Math. Scand. 36 (1975), 254-262.
  • M. Berger and B. Gostiaux, Differential geometry: Manifolds, curves and surfaces, Springer, 1987.
  • W. Blaschke, Vorlesungen über Differentialgeometrie III, Springer, 1929.
  • R.L. Bryant, A duality theorem for Willmore surfaces, J. Diff. Geom. 20 (1984), 23-53.
  • G. Cairns and R.W. Sharpe, On the inversive differential geometry of plane curves, l'Enseignement Math. 36 (1990), 175-196.
  • P. Calapso, Sugl'invarianti del gruppo delle trasformazioni conformi dello spazio, Rend. Circ. Mat. Palermo 22 (1906), 197-213.
  • B.Y. Chen, An invariant of conformal mappings, Proc. Amer. Math. Soc. 40 (1973), 563-564.
  • S.S. Chern, Circle bundles, Lecture Notes Math. 597 (1977), 114-131.
  • A. Demoulin, Géométrie infinitésimale. Principes de Géométrie anallagmatique et de Géométrie réglée intrinsèques, C.R. Acad. Sc., Paris 140 (1905), 1526-1529.
  • C. Dittrich and R. Sulanke, Möbius geometry IV. Characterization of the homogeneous tori, Lecture Notes Math. 1410 (1989), 121-127.
  • B. Doubrovine, S. Novikov and A. Fomenko, Géométrie contemporaine Vol. 1, Editions Mir, 1982.
  • A. Fialkow, The conformal theory of curves, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 437-439.
  • --------, The conformal theory of curves, Trans. Amer. Math. Soc. 51 (1942), 435-501.
  • --------, Conformal differential geometry of a subspace, Trans. Amer. Math. Soc. 56 (1944), 309-433.
  • C. Hsiung and J.J. Levko, Conformal invariants of submanifolds II, Indiana Univ. Math. J. 37 (1988), 181-189.
  • C. Hsiung and L.R. Mugridge, Conformal invariants of submanifolds, Proc. Amer. Math. Soc. 62 (1977), 316-318.
  • --------, Euclidean and conformal invariants of submanifolds, Geometriae Dedicata 8 (1979), 31-38.
  • O. Kowalski, Partial curvature structures and conformal geometry of submanifolds, J. Diff. Geom. 8 (1973), 53-70.
  • T. Kubota, Beiträge zur Inversionsgeometrie der Kurven, Tokyo Imperial Univ. Sc. Reports 13 (1924-25), 243.
  • P. Li and S.T. Yau, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces, Invent. Math. 69 (1982), 269-291.
  • H. Liebmann, Beiträge zur Inversionsgeometrie der Kurven, Akad. der Wissenschaften zu München (1923), 79-94.
  • P. Malliavin, Géométrie différentielle intrinsèque, Hermann, 1972.
  • F. Morley, On differential inversive geometry, Amer. J. Math. 48 (1926), 144-146.
  • G. Mullins, Differential invariants under the inversive group, Thesis, Colum-bia University, 1917.
  • R. Osserman, The four or more vertex theorem, Amer. Math. Monthly 92 (1985), 332-337.
  • B. Patterson, The differential invariants of inversive geometry, Amer. J. Math. 50 (1928), 553-568.
  • F. Pedit, The tension field of the conformal Gauss map, preprint.
  • U. Pinkall, On the four-vertex theorem, Aequationes 34 (1987), 221-230.
  • U. Pinkall and I. Sterling, Willmore surfaces, Math. Intelligencer 9 (1987), 38-43.
  • M.C. Romero Fuster, S.I. Rodrigues Costa and J.J. Nuño Ballesteros, Some global properties of closed space curves, Lecture Notes Math. 1410 (1989), 286-295.
  • C. Schiemangk and R. Sulanke, Submanifolds of the Möbius space, Math. Nachr. 96 (1980), 165-183.
  • L. Simon, Existence of Willmore surfaces, Proc. Centre Math. Anal. Austral. Nat. Univ. 10 (1986), 187-216.
  • R. Sulanke, Submanifolds of the Möbius space III. The analogue of O. Bonnet's theorem for hyperspaces, Tensor 38 (1982), 311-317.
  • --------, Möbius geometry V: Homogeneous surfaces in the Möbius space $\S^3$, Colloquia Math. Soc., J. Bolyai 46 (1984), 1141-1154.
  • T. Takasu, Natural equations of curves under circular point-transformation group and their duals I, Japanese J. Math. 1 (1924), 51-62; II, 1 (1924), 141-146.
  • --------, Differentialgeometrie in den Kugelräumen, 1938.
  • G. Thomsen, Grundlagen der Konformen Flächentheorie, Thesis, Hamburg, 1923.
  • A. Tresse, Sur les invariants différentiels d'une surface par rapport aux transformations conformes de l'espace, C.R. Acad. Sc., Paris 114 (1892), 948-950.
  • --------, Sur les invariants différentiels des groupes continus de transformations, Acta Math. 18 (1893), 1-88.
  • E. Vessiot, Contribution à la géométrie conforme. Cercles et surfaces cerclées, J. Math. Pures Appliquées 2 (1923), 99-165.
  • --------, Contribution à la géométrie conforme. Enveloppes de sphères et courbes gauches, J. Ecole Polytechnique 25 (1925), 43-91.
  • --------, Contribution à la géométrie conforme. Théorie des surfaces I, Bull. Soc. Math. France 54 (1926), 139-179; II, 55 (1927), 39-79.
  • C. Wang, Surfaces in Mobius geometry, Nagoya Math. J. 125 (1992), 53-72.
  • J.H. White, A global invariant of conformal mappings in space, Proc. Amer. Math. Soc. 38 (1973), 162-164.
  • T.J. Willmore, Note on embedded surfaces, An Stiint. Univ. ``Al I. Cuza.'' Iasi s. I. a Mat. 11 (1965), 493-496.
  • --------, Total curvature in Riemannian geometry, Halsted Press, 1982.
  • Y-C. Wong and H-F. Lai, A critical examination of the theory of curves in three dimensional differential geometry, Tôhoku Math. J. 19 (1967), 1-31.