Rocky Mountain Journal of Mathematics

Stability Property and Phase Space

Junji Kato

Full-text: Open access

Article information

Rocky Mountain J. Math., Volume 25, Number 1 (1995), 315-338.

First available in Project Euclid: 5 June 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Kato, Junji. Stability Property and Phase Space. Rocky Mountain J. Math. 25 (1995), no. 1, 315--338. doi:10.1216/rmjm/1181072286.

Export citation


  • T.A. Burton, Uniform asymptotic stability in functional differential equations, Proc. Amer. Math. Soc. 68 (1978), 195-199.
  • --------, Volterra integral and differential equations, Math. Sci. Engrg. 167 (1983).
  • -------- and L. Hatvani, On nonuniform asymptotic stability for nonautonomous functional differential equations, Differential Integral Equations 3 (1990), 285-293.
  • B.D. Coleman and V.J. Mizel, On the stability of solutions of functional differential equations, Arch. Rational Mech. Anal. 30 (1968), 173-196.
  • J.R. Haddock, Friendly spaces for functional differential equations with infinite delay, in Trends in the theory and practice of non-linear analysis, Elsevier Sci. Publ., New York, 173-182, 1985.
  • -------- and W.E. Hornor, Precompactness and convergence in norm of positive orbits in a certain fading memory space, Funkcial. Ekvac. 31 (1988), 349-361.
  • --------, A uniform asymptotic stability theorem for fading memory space, J. Math. Anal. Appl. 155 (1991), 55-65.
  • J.K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21 (1978), 11-41.
  • Y. Hino, S. Murakami and T. Naito, Functional differential equations with infinite delay, Lecture Notes Math. 1473 (1991).
  • T. Kaminogo, Continuous dependence of solutions for integro-differential equations with infinite delay, J. Math. Anal. Appl. 129 (1988), 307-314.
  • F. Kappel and W. Schappacher, Some considerations to the fundamental theory of infinite delay equations, J. Differential Equations 37 (1980), 141-183.
  • J. Kato, Phase space for functional differential equations, Colloq. Math. Soc. János Bolyai 53 (1988), 307-325.
  • V. Lakshmikantham, S. Leela and A.A. Martynyuk, Stability analysis of nonlinear systems, Marcel Dekker, Monticello, 1989.
  • G. Makay, On the asymptotic stability in terms of two measures for functional differential equations, Nonlinear Anal. Theor. Meth. Appl. 16 (1991), 721-727.
  • S. Murakami and T. Naito, Fading memory spaces and stability properties for functional differential equations, Funkcial. Ekvac. 32 (1989), 91-105.
  • S. Murakami and T. Yoshizawa, Relationships between BC-stabilities and $\rho$-stabilities in functional differential equations with infinite delay, Tohoku Math. J. 44 (1992), 45-57.
  • K. Schumacher, Existence and continuous dependence for functional-differential equations with unbounded delay, Arch. Rational Mech. Anal. 67 (1978), 315-335.
  • G. Seifert, On Caratheodory conditions for functional differential equations with infinite delays, Rocky Mountain J. Math. 12 (1982), 615-619.
  • T. Yoshizawa, Stability theory by Liapunov's second method, Publication #9, The Mathematical Society of Japan, 1966.