Rocky Mountain Journal of Mathematics

On the Stability of a Wavetrain Caused by Interacting Wave Modes

M.C.W. Jones

Full-text: Open access

Article information

Source
Rocky Mountain J. Math. Volume 25, Number 1 (1995), 299-313.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181072285

Digital Object Identifier
doi:10.1216/rmjm/1181072285

Mathematical Reviews number (MathSciNet)
MR1340010

Zentralblatt MATH identifier
0829.76010

Citation

Jones, M.C.W. On the Stability of a Wavetrain Caused by Interacting Wave Modes. Rocky Mountain J. Math. 25 (1995), no. 1, 299--313. doi:10.1216/rmjm/1181072285. https://projecteuclid.org/euclid.rmjm/1181072285


Export citation

References

  • S. Barnard and J.M. Child, Higher algebra, MacMillan, London, 1936.
  • T.B. Benjamin and J.E. Feir, The disintegration of wavetrains on deep water Part 1. Theory, J. Fluid Mech. 27 (1967), 417-430.
  • B. Chen and P.G. Saffman, Steady gravity-capillary waves on deep water - 1. Weakly nonlinear waves, Studies Appl. Math. 60 (1979), 183-210.
  • A. Davey and K. Stewartson, On three dimensional packets of surface waves, Proc. Roy. Soc. London 338 (1974), 101-110.
  • V.D. Djordjevic and L.G. Redekopp, On two dimensional packets of capillary-gravity waves, J. Fluid Mech. 79 (1977), 703-714.
  • H. Hasimoto and H. Ono, Nonlinear modulation of gravity waves, J. Phys. Soc. Japan 33 (1972), 805-811.
  • M.C.W. Jones, Nonlinear stability of resonant capillary-gravity waves, Wave Motion 15 (1992), 267-283.
  • M. Jones and J. Toland, Symmetry and the bifurcation of capillary-gravity waves, Arch. Rational Mech. Anal. 96 (1986), 29-53.
  • A.H. Nayfeh, Finite amplitude surface waves in a liquid layer, J. Fluid Mech. 40 (1970), 671-684.
  • --------, Second harmonic resonance in the interaction of an air stream with capillary-gravity waves, J. Fluid Mech. 59 (1973), 803-816.
  • J.F. Toland and M.C.W. Jones, The bifurcation and secondary bifurcation of capillary-gravity waves, Proc. Roy. Soc. London 399 (1985), 391-417.
  • V.E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys. 2 (1968), 190-194.