Rocky Mountain Journal of Mathematics

On Bifurcation and Existence of Positive Solutions for a Certain $p$-Laplacian System

Yin Xi Huang and Joseph W.-H. So

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 25, Number 1 (1995), 285-297.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181072284

Digital Object Identifier
doi:10.1216/rmjm/1181072284

Mathematical Reviews number (MathSciNet)
MR1340009

Zentralblatt MATH identifier
0831.35017

Citation

Huang, Yin Xi; So, Joseph W.-H. On Bifurcation and Existence of Positive Solutions for a Certain $p$-Laplacian System. Rocky Mountain J. Math. 25 (1995), no. 1, 285--297. doi:10.1216/rmjm/1181072284. https://projecteuclid.org/euclid.rmjm/1181072284


Export citation

References

  • J.C. Alexander and S.S. Antman, Global and local behavior of bifurcating multidimensional continua of solutions for multiparameter nonlinear eigenvalue problems, Arch. Rational Mech. Anal. 76 (1981), 339-354.
  • A. Anane, Simplicité et isolation de la première valeur propre du $p$-Laplacian avec poids, C.R. Acad. Sci. Paris 305 (1987), 725-728.
  • P.A. Binding and Y.X. Huang, Bifurcation from eigencurves of the $p$-Laplacian, Diff. Int. Equa. 8 (1995), 415-428.
  • --------, Linked eigenvalue problems for the $p$-Laplacian, Proc. Roy. Soc. Edinburgh 124 A (1994), 1023-1036.
  • R.S. Cantrell, Global higher bifurcations in coupled systems of nonlinear eigenvalue problems, Proc. Roy. Soc. Edinburgh 106 (1987), 113-120.
  • K. Deimling, Nonlinear functional analysis, Springer-Verlag, New York, 1985.
  • J.I. Dí az, Nonlinear partial differential equations and free boundaries, Volume I: Elliptic equations, Research Notes in Mathematics 106, Pitman Publishing Ltd., London, 1985.
  • M.A. Del Pino and R.F. Manásevich, Global bifurcation from the eigenvalues of the $p$-Laplacian, J. Differential Equations 92 (1991), 226-251.
  • P. Drábek, On the global bifurcation for a class of degenerate equations, Ann. Mat. Pura Appl. 159 (1991), 1-16.
  • P.L. Felmer, R.F. Manásevich and F. de Thélin, Existence and uniqueness of positive solutions for certain quasilinear elliptic systems, Comm. Partial Differential Equations 17 (1992), 2013-2029.
  • J. Fleckinger, J. Hernández and F. de Thélin, Principe du maximum pour un systèm elliptique non linéaire, C.R. Acad. Sci. Paris 314 (1992), 665-668.
  • --------, On maximum principles and existence of positive solutions for some cooperative elliptic systems, Diff. Int. Equa. 8 (1995), 69-85.
  • Y.X. Huang, On eigenvalue problems of the $p$-Laplacian with Neumann boundary conditions, Proc. Amer. Math. Soc. 109 (1990), 177-184.
  • J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaries, Dunod, Paris, 1969.
  • J.D. Murray, A simple method for obtaining approximate solutions for a class of diffusion-kinetics enzymes problems: II. Further examples and nonsymmetric problems, Math. Biosci. 3 (1968), 115-133.
  • M. Ôtani and T. Teshima, On the first eigenvalue of some quasilinear elliptic equations, Proc. Japan Acad. Ser. A Math. Sci. 64 (1988), 8-10.
  • F. de Thélin, Première valeur propre d'un système elliptique non linéaire, C.R. Acad. Sci. Paris 311 (1990), 603-606.
  • F. de Thélin and J. Vélin, Existence et non--existence de solutions non triviales pour des systèmes elliptiques non linéaires, C.R. Acad. Sci. Paris 313 (1991), 589-592.
  • P. Tolksdorf, On the Dirichlet problem for quasilinear equations in domains with conical boundary points, Comm. Partial Differential Equations 8 (1983), 773-817.