Rocky Mountain Journal of Mathematics

Hierarchically Structured Branching Populations with Spatial Motion

Kenneth J. Hochberg

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 25, Number 1 (1995), 269-283.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181072283

Digital Object Identifier
doi:10.1216/rmjm/1181072283

Mathematical Reviews number (MathSciNet)
MR1340008

Zentralblatt MATH identifier
0834.60053

Subjects
Primary: 60G57: Random measures
Secondary: 60J80: Branching processes (Galton-Watson, birth-and-death, etc.)

Keywords
Measure-valued process superprocess branching process diffusion process multilevel process Hausdorff dimension

Citation

Hochberg, Kenneth J. Hierarchically Structured Branching Populations with Spatial Motion. Rocky Mountain J. Math. 25 (1995), no. 1, 269--283. doi:10.1216/rmjm/1181072283. https://projecteuclid.org/euclid.rmjm/1181072283


Export citation

References

  • D.A. Dawson and K.J. Hochberg, A multilevel branching model, Adv. in Appl. Probab. 23 (1991), 701-715.
  • D.A. Dawson, K.J. Hochberg and Y. Wu, Multilevel branching systems, in White noise analysis: Mathematics and applications (T. Hida, H.H. Kuo, J. Potthoff and L. Streit, eds.), World Scientific Publ., Singapore, 1990, 93-107.
  • L.G. Gorostiza and J.A. Lopez-Mimbela, The multitype measure branching process, Adv. in Appl. Probab. 22 (1990), 49-67.
  • I. Iscoe, On the supports of measure-valued critical branching Brownian motion, Ann. Probab. 16 (1988), 200-221.
  • Y. Wu, Dynamic particle systems and multilevel measure branching processes, Thesis, Carleton University, Canada, 1992.
  • U. Zähle, Self-similar random measures I. Notion, carrying Hausdorff dimension and hyperbolic distribution, Probab. Theory Related Fields 80 (1992), 79-100.