Rocky Mountain Journal of Mathematics

Spatially Discrete Nonlinear Diffusion Equations

John W. Cahn, Shui-Nee Chow, and Erik S. Van Vleck

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 25, Number 1 (1995), 87-118.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181072270

Digital Object Identifier
doi:10.1216/rmjm/1181072270

Mathematical Reviews number (MathSciNet)
MR1339995

Zentralblatt MATH identifier
0833.65095

Citation

Cahn, John W.; Chow, Shui-Nee; Vleck, Erik S. Van. Spatially Discrete Nonlinear Diffusion Equations. Rocky Mountain J. Math. 25 (1995), no. 1, 87--118. doi:10.1216/rmjm/1181072270. https://projecteuclid.org/euclid.rmjm/1181072270


Export citation

References

  • S.M. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Met. 27 (1979), 1085-1095.
  • P.W. Bates and P.C. Fife, Spectral comparison principles for the Cahn-Hilliard and phase-field equations, and time scales for coarsening, Physica D, North-Holland-New York, 1991.
  • M.J. Buerger, Elementary crystallography, An introduction to the fundamental geometrical features of crystals, Wiley, New York, 1963.
  • J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys. 28 (1958), 258-267.
  • H.E. Cook, D. de Fontaine and J.E. Hilliard, A model for diffusion on cubic lattices and its application to the early stages of ordering, Acta Met. 17 (1969), 765-773.
  • R.L. Devaney, An introduction to chaotic dynamical systems, Benjamin-Cummings, Menlo Park, CA, 1986.
  • C.W. Gear, Numerical initial value problems in ordinary differential equations, Prentice-Hall, Englewood Cliffs, 1971.
  • G.H. Golub and C.F. Van Loan, Matrix computations, Johns Hopkins Press, Baltimore, 1983.
  • J.K. Hale, Asymptotic behavior of dissipative systems, Amer. Math. Soc., 1988.
  • J.K. Hale, L.T. Magalhaes and W.M. Oliva, An introduction to infinite dimensional dynamical systems, Springer-Verlag, New York, 1984.
  • M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Stand. 49 (1952), 409-436.
  • M. Hillert, A solid-solution-model for inhomogeneous systems, Acta Met. 9 (1961), 525-535.
  • International tables of X-ray crystallography, Vol. A, D. Reidel Publishing, Dordrecht-Boston, 1983.
  • O. Ladyzhenskaya, Attractors for semigroups and evolution equations, Cambridge University Press, New York, 1991.
  • N.M. Nachtigal, S.C. Reddy and L.N. Trefethen, How fast are nonsymmetric matrix iterations?, SIAM J. Matrix Anal. Appl. 13 (1992), 778-795.
  • Y. Saad and M.H. Schultz, Conjugate gradient-like algorithms for solving nonsymmetric linear systems, Math. Comp. 44 (1985), 417-424.
  • J. Stoer and R. Bulirsch, Introduction to numerical analysis, Springer-Verlag, New York, 1980.
  • R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Springer-Verlag, New York, 1988.