Rocky Mountain Journal of Mathematics

Factorization in Commutative Rings with Zero Divisors

D.D. Anderson and Silvia Valdes-Leon

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 26, Number 2 (1996), 439-480.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181072068

Digital Object Identifier
doi:10.1216/rmjm/1181072068

Mathematical Reviews number (MathSciNet)
MR1406490

Zentralblatt MATH identifier
0865.13001

Subjects
Primary: 13A05: Divisibility; factorizations [See also 13F15]
Secondary: 13A15: Ideals; multiplicative ideal theory 13F99: None of the above, but in this section

Citation

Anderson, D.D.; Valdes-Leon, Silvia. Factorization in Commutative Rings with Zero Divisors. Rocky Mountain J. Math. 26 (1996), no. 2, 439--480. doi:10.1216/rmjm/1181072068. https://projecteuclid.org/euclid.rmjm/1181072068


Export citation

References

  • J.-C. Allard, Demi-groupes $D$-atomiques, C.R. Acad. Sci. Paris 273 (1971), 661-664.
  • D.D. Anderson, The Krull intersection theorem, Pacific J. Math. 57 (1975), 11-14.
  • --------, Some finiteness conditions on a commutative ring, Houston J. Math. 4 (1978), 289-299.
  • --------, Globalization of some local properties in Krull domains, Proc. Amer. Math. Soc. 85 (1982), 141-145.
  • D.D. Anderson and D.F. Anderson, Elasticity of factorizations in integral domains, J. Pure Appl. Algebra 80 (1992), 217-235.
  • D.D. Anderson, D.F. Anderson and R. Markanda, The rings $R(X)$ and $R\langle X\rangle$, J. Algebra 95 (1985), 96-115.
  • D.D. Anderson, D.F. Anderson and M. Zafrullah, Factorization in integral domains, J. Pure Appl. Algebra 69 (1990), 1-19.
  • --------, Factorization in integral domains, II, J. Algebra 152 (1992), 78-93.
  • --------, Atomic domains in which almost all atoms are prime, Comm. Alg. 20 (1992), 1447-1462.
  • --------, Unique factorization rings with zero divisors: Corrigendum, Houston J. Math. 11 (1985), 423-426.
  • D.D. Anderson and J. Mott, Cohen-Kaplansky domains: integral domains with a finite number of irreducible elements, J. Algebra 148 (1992), 17-41.
  • M. Billis, Unique factorization in the integers modulo $n$, Amer. Math. Monthly 75 (1968), 527.
  • A. Bouvier, Demi-groupes de type $(R)$. Demi-groupes commutatifs à factorisation unique, C.R. Acad. Sci. Paris 268 (1969), 372-375.
  • --------, Demi-groupes de type $(R)$, C.R. Acad. Sci. Paris 270 (1969), 561-563.
  • --------, Factorisation dans les demi-groupes, C.R. Acad. Sci. Paris 271 (1970), 533-535.
  • --------, Factorisation dans les demi-groupes de fractions, C.R. Acad. Sci. Paris 271 (1970), 924-925.
  • --------, Anneaux présimplifiables et anneaux atomiques, C.R. Acad. Sci. Paris 272 (1971), 992-994.
  • --------, Anneaux de Gauss, C.R. Acad. Sci. Paris 273 (1971), 443-445.
  • --------, Sur les anneaux de fractions des anneaux atomiques présimplifiables, Bull. Sci. Math. 95 (1971), 371-377.
  • --------, Remarques sur la facatorisation dans les anneaux commutatifs, Pub. Dépt. Math. Lyon 8 (1971), 1-18.
  • --------, Anneaux présimplifiable, C.R. Acad. Sci. Paris 274 (1972), 1605-1607.
  • --------, Résultats nouveaux sur les anneaux présimplifiables, C.R. Acad. Sci. Paris 275 (1972), 955-957.
  • --------, Anneaux preśimplifiables, Rev. Roum. Math. Pure et Appl. 29 (1974), 713-724.
  • --------, Structure des anneaux à factorisation unique, Pub. Dépt. Math. Lyon 11 (1974), 39-49.
  • --------, Sur les anneaux principaux, Acta. Math. Sci. Hung. 27 (1976), 231-242.
  • V. Camillo and R. Guralnick, Polynomial rings over Goldie rings are often Goldie, Proc. Amer. Math. Soc. 98 (1986), 567-568.
  • C.R. Fletcher, Unique factorization rings, Proc. Camb. Phil. Soc. 65 (1969), 579-583.
  • --------, The structure of unique factorization rings, Proc. Camb. Phil. Soc. 67 (1970), 535-540.
  • --------, Euclidean rings, J. London Math. Soc. 41 (1971), 79-82.
  • S. Galovich, Unique factorization rings with zero divisors, Math. Magazine 51 (1978), 276-283.
  • R. Gilmer, Multiplicative ideal theory, Marcel Dekker, New York, 1972.
  • A. Grams, Atomic domains and the ascending chain condition for principal ideals, Proc. Camb. Phil. Soc. 75 (1974), 321-329.
  • W. Heinzer and D. Lantz, Commutative rings and ACC on $n$-generated ideals, J. Algebra 80 (1983), 261-278.
  • J. Huckaba, Commutative rings with zero divisors, Marcel Dekker, New York, 1988.
  • I. Kaplansky, Commutative rings, revised edition, University of Chicago, Chicago, 1974.
  • R.E. Kennedy, Krull rings, Pacific J. Math. 89 (1980), 131-136.
  • J.W. Kerr, Very long chains of annihilator ideals, Israel J. Math. 47 (1983), 197-204.
  • R. Matsuda, On Kennedy's problem, Comm. Math. Univ. St. Pauli 31 (1982), 143-145.
  • --------, Generalizations of multiplicative ideal theory to rings with zero divisors, Bull. Fac. Sci. Ibaraki Univ. Ser. A. Math. 17 (1985), 49-101.
  • S. Mori, \" Uber die produktzerlegung der hauptideal I, J. Sci. Hiroshima Univ. 8 (1938), 7-13.
  • --------, Über die produktzerlegung der hauptideal II, J. Sci. Hiroshima Univ. 9 (1939), 145-155.
  • --------, Über die produktzerlegung der hauptideal III, J. Sci. Hiroshima Univ. 10 (1940), 85-94.
  • --------, Über die produktzerlegung der hauptideal IV, J. Sci. Hiroshima Univ. 11 (1941), 7-14.
  • M. Roitman, Polynomial extensions of atomic domains, J. Pure Appl. Algebra 87 (1993), 187-199
  • P. Samuel, About Euclidean rings, J. Algebra 19 (1971), 282-301.
  • A. Zaks, Atomic rings without a.c.c. on principal ideals, J. Algebra 74 (1982), 223-231.