Rocky Mountain Journal of Mathematics

Disconjugacy and Transformations for Symplectic Systems

Martin Bohner and Ondřej Došlý

Full-text: Open access

Article information

Source
Rocky Mountain J. Math. Volume 27, Number 3 (1997), 707-743.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181071889

Digital Object Identifier
doi:10.1216/rmjm/1181071889

Mathematical Reviews number (MathSciNet)
MR1490271

Zentralblatt MATH identifier
0894.39005

Citation

Bohner, Martin; Došlý, Ondřej. Disconjugacy and Transformations for Symplectic Systems. Rocky Mountain J. Math. 27 (1997), no. 3, 707--743. doi:10.1216/rmjm/1181071889. https://projecteuclid.org/euclid.rmjm/1181071889


Export citation

References

  • C.D. Ahlbrandt, Continued fraction representations of maximal and minimal solutions of a discrete matrix Riccati equation, SIAM J. Math. Anal. 24 (1993), 1597-1621.
  • --------, Equivalence of discrete Euler equations and discrete Hamiltonian systems, J. Math. Anal. Appl. 180 (1993), 498-517.
  • C.D. Ahlbrandt and M. Heifetz, Discrete Riccati equations of filtering and control, in Conference proceedings of the first international conference on difference equations (S. Elaydi, J. Graef, G. Ladas, and A. Peterson, eds.), Gordon and Breach, San Antonio, 1994.
  • C.D. Ahlbrandt, D.B. Hinton, and R.T. Lewis, Necessary and sufficient conditions for the discreteness of the spectrum of certain singular differential operators, Canad. J. Math. 33 (1981), 229-246.
  • --------, The effect of variable change on oscillation and disconjugacy criteria with applications to spectral theory and asymptotic theory, J. Math. Anal. Appl. 81 (1981), 234-277.
  • C.D. Ahlbrandt and J.W. Hooker, Recessive solutions of symmetric three term recurrence relations, Canad. Math. Soc., Conference Proceedings, 8 (1987), 3-42.
  • C.D. Ahlbrandt and A. Peterson, The $(n,n)$-disconjugacy of a $2n^\text\rm th$ order linear difference equation, Comput. Math. Appl. 28 (1994), 1-9.
  • A. Ben-Israel and T.N.E. Greville, Generalized inverses: Theory and applications, John Wiley & Sons, Inc., New York, 1974.
  • M. Bohner, Controllability and disconjugacy for linear Hamiltonian difference systems, in Conference Proceedings of the First International Conference on Difference Equations (S. Elaydi, J. Graef, G. Ladas, and A. Peterson, eds.), Gordon and Breach, San Antonio, 1994.
  • M. Bohner, Linear Hamiltonian difference systems: Disconjugacy and Jacobi-type conditions, J. Math. Anal. Appl. 199 (1996), 804-826.
  • M. Bohner, Riccati matrix difference equations and linear Hamiltonian difference systems, Dynamics of continuous, discrete and impulsive systems 2 (1996), 147-159.
  • S. Chen, Disconjugacy, disfocality, and oscillation of second order difference equations, J. Differential Equations 107 (1994), 383-394.
  • S. Chen and L. Erbe, Oscillation and nonoscillation for systems of self-adjoint second-order difference equations, SIAM J. Math. Anal. 20 (1989), 939-949.
  • W.A. Coppel, Disconjugacy, Lecture Notes No. 220. Springer-Verlag, Berlin, 1971.
  • O. Došlý, Oscillation criteria and the discreteness of the spectrum of self-adjoint, even order, differential operators, Proc. Roy. Soc. Edinburgh, Sect. A, 119 (1991), 219-232.
  • --------, Oscillation theory of self-adjoint equations and some its applications, Tatra Mountains Math. Publ. 4 (1994), 39-48.
  • --------, Oscillation and spectral properties of a class of singular differential operators, to appear in Math. Nachr., 1997.
  • --------, Transformations of linear Hamiltonian difference systems and some of their applications, J. Math. Anal. Appl. 191 (1995), 250-265.
  • L. Erbe and P. Yan, Disconjugacy for linear Hamiltonian difference systems, J. Math. Anal. Appl. 167 (1992), 355-367.
  • --------, Qualitative properties of Hamiltonian difference systems, J. Math. Anal. Appl. 171 (1992), 334-345.
  • --------, Oscillation criteria for Hamiltonian matrix difference systems, Proc. Amer. Math. Soc. 119 (1993), 525-533.
  • --------, On the discrete Riccati equation and its applications to discrete Hamiltonian systems, Rocky Mountain J. Math. 25 (1995), 167-178.
  • L. Erbe and B.G. Zhang, Oscillation of second order linear difference equations, Chinese J. Math. 16 (1988), 239-252.
  • P. Hartman, Difference equations: Disconjugacy, principal solutions, Green's functions, complete monotonicity, Trans. Amer. Math. Soc. 246 (1978), 1-30.
  • J.W. Hooker, M.K. Kwong, and W.T. Patula, Oscillatory second order linear difference equations and Riccati equations, SIAM J. Math. Anal. 18 (1987), 54-63.
  • J.W. Hooker and W.T. Patula, Riccati type transformations for second-order linear difference equations, J. Math. Anal. Appl. 82 (1981), 451-462.
  • W. Kratz, Quadratic functionals in variational analysis and control theory, Akademie Verlag, Berlin, 1995.
  • R.T. Lewis, The discreteness of the spectrum of self-adjoint, even order, differential operators, Proc. Amer. Math. Soc. 42 (1974), 480-482.
  • T. Peil and A. Peterson, Criteria for $C$-disfocality of a self-adjoint vector difference equation, J. Math. Anal. Appl. 179 (1993), 512-524.
  • A. Peterson, $C$-disfocality for linear Hamiltonian difference systems, J. Differential Equations 110 (1994), 53-66.
  • A. Peterson and J. Ridenhour, Atkinson's superlinear oscillation theorem for matrix difference equations, SIAM J. Math. Anal. 22 (1991), 774-784.
  • --------, Oscillation of second order linear matrix difference equations, J. Differential Equations 89 (1991), 69-88.
  • --------, A disconjugacy criterion of W.T. Reid for difference equations, Proc. Amer. Math. Soc. 114 (1992), 459-468.
  • J. Popenda, Oscillation and nonoscillation theorems for second-order difference equations, J. Math. Anal. Appl. 123 (1987), 34-38.
  • C.H. Rasmussen, Oscillation and asymptotic behaviour of systems of ordinary differential equations, Trans. Amer. Math. Soc. 256 (1979), 1-48.
  • W.T. Reid, Ordinary differential equations, John Wiley & Sons, Inc., New York, 1971.
  • --------, Sturmian theory for ordinary differential equations, Springer-Verlag, New York, 1980.