Rocky Mountain Journal of Mathematics

Arc Approximation Property and Confluence of Induced Mappings

Wł odzimierz J. Charatonik

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 28, Number 1 (1998), 107-154.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181071825

Digital Object Identifier
doi:10.1216/rmjm/1181071825

Mathematical Reviews number (MathSciNet)
MR1639837

Zentralblatt MATH identifier
0926.54024

Subjects
Primary: 54F15: Continua and generalizations
Secondary: 54B20: Hyperspaces 54C10: Special maps on topological spaces (open, closed, perfect, etc.)

Keywords
Approximation arcwise connected confluent continuum hyperspace induced mapping joining pseudo-confluent semi-confluent weakly confluent $n$-weakly confluent

Citation

Charatonik, Wł odzimierz J. Arc Approximation Property and Confluence of Induced Mappings. Rocky Mountain J. Math. 28 (1998), no. 1, 107--154. doi:10.1216/rmjm/1181071825. https://projecteuclid.org/euclid.rmjm/1181071825


Export citation

References

  • J.M. Aarts and P. van Emde Boas, Continua as remainders in compact extensions, Nieuw Arch. Wisk. (4) 15 (1967), 34-37.
  • W.J. Charatonik, $R^i$-continua and hyperspaces, Topology Appl. 23 (1986), 207-216.
  • C. Eberhart, Intervals of continua which are Hilbert cubes, Proc. Amer. Math. Soc. 68 (1978), 220-224.
  • C. Eberhart and S.B. Nadler, Jr., Hyperspaces of cones and fans, Proc. Amer. Math. Soc. 77 (1979), 279-288.
  • J.B. Fugate, Small retractions of smooth dendroids onto trees, Fund. Math. 71 (1971), 255-262.
  • J. Grispolakis and E.D. Tymchatyn, Continua which admit only certain classes of onto mappings, Topology Proc. 3 (1978), 347-362.
  • H. Hosokawa, Induced mappings between hyperspaces, Bull. Tokyo Gakugei Univ. 41 (1989), 1-6.
  • --------, Induced mappings between hyperspaces II, Bull. Tokyo Gakugei Univ. 44 (1992), 1-7.
  • H. Kato, A note on continuous mappings and the property of J.L. Kelley, Proc. Amer. Math. Soc. 112 (1991), 1143-1148.
  • O.H. Keller, Die Homoiomorphie der kompakten konvexen Mengen in Hilbertschen Raum, Math. Ann. 105 (1931), 748-758.
  • J. Kennedy and J.T. Rogers, Jr., Orbits of the pseudo-circle, Trans. Amer. Math. Soc. 296 (1986), 327-340.
  • K. Kuratowski, Topology, Vol. I, Academic Press and PWN, 1966.
  • --------, Topology, Vol. II, Academic Press and PWN, 1968.
  • A. Lelek and E.D. Tymchatyn, Pseudo-confluent mappings and a classification of continua, Canad. J. Math. 27 (1975), 1336-1348.
  • T. Maćkowiak, Mappings of a constant degree, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys. 23 (1975), 285-291.
  • --------, Continuous mappings on continua, Dissert. Math. 158 (1979), 1-95.
  • M.M. Marsh and E.D. Tymchatyn, Inductively weakly confluent mappings, Houston J. Math. 18 (1992), 235-250.
  • L. Mohler and J. Nikiel, A universal smooth dendroid answering a question of J. Krasinkiewicz, Houston J. Math. 14 (1988), 535-541.
  • S.B. Nadler, Jr., Hyperspaces of sets, Marcel Dekker, New York, 1978.
  • R.W. Wardle, On a property of J.L. Kelley, Houston J. Math. 3 (1977), 291-299.