Rocky Mountain Journal of Mathematics

The Hyperbolic Tangent and Generalized Mellin Inversion

Eric Stade

Full-text: Open access

Article information

Source
Rocky Mountain J. Math. Volume 29, Number 2 (1999), 691-707.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181071659

Digital Object Identifier
doi:10.1216/rmjm/1181071659

Mathematical Reviews number (MathSciNet)
MR1705483

Zentralblatt MATH identifier
0937.43006

Citation

Stade, Eric. The Hyperbolic Tangent and Generalized Mellin Inversion. Rocky Mountain J. Math. 29 (1999), no. 2, 691--707. doi:10.1216/rmjm/1181071659. https://projecteuclid.org/euclid.rmjm/1181071659


Export citation

References

  • T.S. Bhanu-Murty, Plancherel's measure for the factor space $SL(n,\r)/SO(n)$, Dokl. Akad. Nauk. SSSR 133 (1960), 503-506.
  • Harish-Chandra, Collected papers, Vol. II, Springer-Verlag, New York, 1984, 409-539.
  • S. Helgason, Lie groups and symmetric spaces, in Battelle rencontres (C.M. DeWitt and J.A. Wheeler, eds.), Benjamin, New York, 1968.
  • --------, Groups and geometric analysis, Academic Press, New York, 1984.
  • E. Stade and D.I. Wallace, Weyl's law for $SL(3,\z) \backslash SL(3,\r)/SO(3,\r)$, Pacific J. Math. 173 (1966), 241-261.
  • A. Terras, Harmonic analysis on symmetric spaces, Vol. II, Springer-Verlag, New York, 1988.
  • D.I. Wallace, The Selberg trace formula for $SL(3,\z) \backslash SL(3,\r)/SO(3,\r)$, Trans. Amer. Math. Soc. 345 (1994), 1-36.