Rocky Mountain Journal of Mathematics

Translation Theorems for Fourier-Feynman Transforms and Conditional Fourier-Feynman Transforms

Seung Jun Chang, Chull Park, and David Skoug

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 30, Number 2 (2000), 477-496.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181070331

Digital Object Identifier
doi:10.1216/rmjm/1022009276

Mathematical Reviews number (MathSciNet)
MR1786993

Zentralblatt MATH identifier
1034.28008

Citation

Chang, Seung Jun; Park, Chull; Skoug, David. Translation Theorems for Fourier-Feynman Transforms and Conditional Fourier-Feynman Transforms. Rocky Mountain J. Math. 30 (2000), no. 2, 477--496. doi:10.1216/rmjm/1022009276. https://projecteuclid.org/euclid.rmjm/1181070331


Export citation

References

  • M.D. Brue, A functional transform for Feynman integrals similar to the Fourier transform, Ph.D. Thesis, University of Minnesota, Minneapolis, 1972.
  • R.H. Cameron and G.E. Graves, Additional functionals on a space of continuous functions, I, Trans. Amer. Math. Soc. 70 (1951), 160-176.
  • R.H. Cameron and W.T. Martin, Transformations of Wiener integrals under translations, Ann. of Math. 45 (1944), 386-396.
  • R.H. Cameron and D.A. Storvick, A translation theorem for analytic Feynman integrals, Trans. Amer. Math. Soc. 125 (1966), 1-6.
  • --------, An $L_2$ analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), 1-30.
  • --------, Some Banach algebras of analytic Feynman integrable functionals, Analytic functions (Kozubnik, 1979), Lecture Notes in Math. 798, Springer, Berlin, 1980, 18-67.
  • --------, A new translation theorem for the analytic Feynman integral, Rev. Roum. Math. Pures Appl. 27 (1982), 937-944.
  • --------, A simple definition of the Feynman integral, with applications, Mem. Amer. Math. Soc. 46 (1983), 1-46.
  • K.S. Chang, Scale-invariant measurability in Yeh-Wiener Space, J. Korean Math. Soc. 19 (1982), 61-67.
  • K.S. Chang, G.W. Johnson and D.L. Skoug, Functions in the Banach algebra $S(v)$, J. Korean Math. Soc. 24 (1987), 151-158.
  • S.J. Chang and D.M. Chung, A class of conditional Wiener integrals, J. Korean Math. Soc. 30 (1993), 161-172.
  • D.M. Chung and S.J. Kang, Translation theorems for Feynman integrals on abstract Wiener and Hilbert spaces, Bull. Korean Math. Soc. 23 (1986), 177-187.
  • D.M. Chung, C. Park and D.L. Skoug, Generalized Feynman integrals via conditional Feynman integrals, Michigan Math. J. 40 (1993), 377-391.
  • D.M. Chung and D.L. Skoug, Conditional analytic Feynman integrals and a related Schrödinger integral equation, SIAM J. Math. Anal. 20 (1989), 950-965.
  • T. Huffman, C. Park and D. Skoug, Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. 347 (1995), 661-673.
  • --------, Convolution and Fourier-Feynman transforms, Rocky Mountain J. Math. 27 (1997), 827-841.
  • --------, Convolutions and Fourier-Feynman transforms of functionals involving multiple integrals, Michigan Math. J. 43 (1996), 247-261.
  • --------, Generalized transforms and convolutions, Internat. J. Math. Math. Sci. 20 (1997), 19-32.
  • G.W. Johnson and D.L. Skoug, The Cameron-Storvick function space integral: An $L(L_p, L_p^\p)$ theory, Nagoya Math. J. 60 (1976), 93-137.
  • --------, An $L_p$ analytic Fourier-Feynman transform, Michigan Math. J. 26 (1979), 103-127.
  • --------, Scale-invariant measurability in Wiener space, Pacific J. Math 83 (1979), 157-176.
  • --------, Notes on the Feynman integral, III, Pacific J. Math. 105 (1983), 321-358.
  • C. Park and D. Skoug, A simple formula for conditional Wiener integrals with applications, Pacific J. Math. 135 (1988), 381-394.
  • --------, A Kac-Feynman integral equation for conditional Wiener integrals, J. Integral Equations Appl. 3 (1991), 411-427.
  • --------, The Feynman integral of quadratic potentials depending on $n$ time parameters, Nagoya Math. J. 110 (1998), 151-162.
  • --------, Conditional Fourier-Feynman transformations and conditional convolution products, submitted.
  • I. Segal, Transformations in Wiener space and squares of quantum fields, Adv. Math. 4 (1970), 91-108.
  • D.A. Storvick, The analytic Feynman integral, in Dirichlet forms and stochastic processes, Proc. of the Internat. Conf., Beijing, China, 1993, 355-362.
  • J. Yeh, Inversion of conditional Wiener integrals, Pacific J. Math. 59 (1975), 623-638.